A confocal microparticle image velocimetry (micro-PIV) system was used to obtain detailed information on the velocity profiles for the flow of pure water (PW) and in vitro blood (haematocrit up to 17%)
SUMMARYThis report presents a technique based on the particle method to simulate the process of thrombogenesis while considering platelet aggregation under the influence of fluid dynamics. In the employed particle method, the blood region was discretized by particles that were assumed to have the characteristics of plasma and platelets. The moving particle semi-implicit (MPS) method developed for incompressible viscous flow was applied to the flow of plasma and platelets. Adhesion of platelets to the injured vessel wall was expressed by a spring force acting between them. The same modeling was applied for the aggregation of platelets. Three-dimensional computer simulation of thrombogenesis was performed in a rectangular flow channel under the condition of Re = 0.02. We demonstrated that the proposed method can simulate the formation and destruction of a thrombus with the inclusion of feedback reactions of thrombus development and flow. The results revealed that the growth rate of a thrombus, its height, and time required from the beginning of thrombus formation to its collapse vary according to the flow rate, indicating that flow dynamics plays an important role in regulating the development of a primary thrombus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.