The red carotenoid astaxanthin possesses higher antioxidant activity than other carotenoids and has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. In this study, we produced astaxanthin in the budding yeast Saccharomyces cerevisiae by introducing the genes involved in astaxanthin biosynthesis of carotenogenic microorganisms. In particular, expression of genes of the red yeast Xanthophyllomyces dendrorhous encoding phytoene desaturase (crtI product) and bifunctional phytoene synthase/lycopene cyclase (crtYB product) resulted in the accumulation of a small amount of -carotene in S. cerevisiae. Overexpression of geranylgeranyl pyrophosphate (GGPP) synthase from S. cerevisiae (the BTS1 gene product) increased the intracellular -carotene levels due to the accelerated conversion of farnesyl pyrophosphate to GGPP. Introduction of the X. dendrorhous crtS gene, encoding astaxanthin synthase, assumed to be the cytochrome P450 enzyme, did not lead to astaxanthin production. However, coexpression of CrtS with X. dendrorhous CrtR, a cytochrome P450 reductase, resulted in the accumulation of a small amount of astaxanthin. In addition, the -carotene-producing yeast cells transformed by the bacterial genes crtW and crtZ, encoding -carotene ketolase and hydroxylase, respectively, also accumulated astaxanthin and its intermediates, echinenone, canthaxanthin, and zeaxanthin. Interestingly, we found that these ketocarotenoids conferred oxidative stress tolerance on S. cerevisiae cells. This metabolic engineering has potential for overproduction of astaxanthin and breeding of novel oxidative stress-tolerant yeast strains.
Probiotic bacteria provide benefits in enhancing host immune responses and protecting against infection. Induction of IgA production by oral administration of probiotic bacteria in the intestine has been considered to be one reason for this beneficial effect, but the mechanisms of the effect are poorly understood. Lactobacillus gasseri SBT2055 (LG2055) is a probiotic bacterium with properties such as bile tolerance, ability to improve the intestinal environment, and it has preventive effects related to abdominal adiposity. In this study, we have found that oral administration of LG2055 induced IgA production and increased the rate of IgA+ cell population in Peyer's patch and in the lamina propria of the mouse small intestine. The LG2055 markedly increased the amount of IgA in a co-culture of B cells and bone marrow derived dendritic cells (BMDC), and TLR2 signal is critical for it. In addition, it is demonstrated that LG2055 stimulates BMDC to promote the production of TGF-β, BAFF, IL-6, and IL-10, all critical for IgA production from B cells. Combined stimulation of B cells with BAFF and LG2055 enhanced the induction of IgA production. Further, TGF-β signal was shown to be critical for LG2055-induced IgA production in the B cell and BMDC co-culture system, but TGF-β did not induce IgA production in a culture of only B cells stimulated with LG2055. Furthermore, TGF-β was critical for the production of BAFF, IL-6, IL-10, and TGF-β itself from LG2055-stimulated BMDC. These results demonstrate that TGF-β was produced by BMDC stimulated with LG2055 and it has an autocrine/paracrine function essential for BMDC to induce the production of BAFF, IL-6, and IL-10.
We recently reported that Lactobacillus helveticus SBT2171 (LH2171) inhibited the proliferation and inflammatory cytokine production of primary immune cells in vitro, and alleviated collagen-induced arthritis (CIA) in mice, a model of human rheumatoid arthritis (RA). In this study, we newly investigated whether LH2171 could relieve the severity of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), which is an autoimmune disease, but develop the symptoms by different mechanisms from RA. In MS and EAE, main cause of the disease is the abnormality in CD4+ T cell immunity, whereas in RA and CIA, is that in antibody-mediated immunity. The intraperitoneal administration of LH2171 significantly decreased the incidence and clinical score of EAE in mice. LH2171 also reduced the numbers of pathogenic immune cells, especially Th17 cells, in the spinal cord at the peak stage of disease severity. Interestingly, before the onset of EAE, LH2171 administration remarkably decreased the ratio of Th17 cells to CD4+ T cells in the inguinal lymph nodes (LNs), where pathogenic immune cells are activated to infiltrate the central nervous system, including the spinal cord. Furthermore, the expression of interleukin (IL)-6, an inflammatory cytokine essential for Th17 differentiation, decreased in the LNs of LH2171-administered mice. Moreover, LH2171 significantly inhibited IL-6 production in vitro from both DC2.4 and RAW264.7 cells, model cell lines of antigen-presenting cells. These findings suggest that LH2171 might down-regulate IL-6 production and the subsequent Th17 differentiation and spinal cord infiltration, consequently alleviating EAE symptoms.
Astaxanthin possesses higher antioxidant activity than other carotenoids and, for this and other reasons, has great commercial potential for use in the aquaculture, pharmaceutical, and food industries. The basidiomycetous yeast Xanthophyllomyces dendrorhous is one of the best natural producers of astaxanthin, but wild-type cells accumulate only a small amount of astaxanthin. In this study, we developed an efficient flow cytometry method to screen for astaxanthin-overproducing mutants of X. dendrorhous. We first examined the relationship between cellular astaxanthin content and the intensity of fluorescence emitted from the cell. Although the fluorescence emission maximum of astaxanthin dissolved in acetone occurred at 570 nm, intracellular astaxanthin content correlated better with emission at around 675 nm in different X. dendrorhous strains. Using this emission wavelength, we screened cells mutagenized with ethyl methanesulfonate and successfully isolated mutants that produced 1.5-3.8-fold more astaxanthin than parent cells. This method enabled us to obtain overproducers five times more efficient than conventional screening from plate culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.