The hawksbill sea turtle (Eretmochelys imbricata) is a critically endangered species at a risk of extinction. Preservation of the genomic and cellular information of endangered animals is important for future genetic and biological studies. Here, we report the efficient establishment of primary fibroblast cultures from skin tissue of the hawksbill sea turtle. We succeeded in establishing 19 primary cultures from 20 hawksbill sea turtle individuals (a success rate of 95%). These cells exhibited a fibroblast-like morphology and grew optimally at a temperature of 26°C, but experienced a loss of viability when cultured at 37°C. Chromosomal analysis using the primary cells derived here revealed that hawksbill sea turtles have a 2n = 56 karyotype. Furthermore, we showed that our primary cell cultures are free of several fish-related viruses, and this finding is important for preservation purposes. To our knowledge, this report is the first to describe primary cell cultures established from normal tissues of the hawksbill sea turtle. The results will contribute to the preservation of biodiversity, especially for the sea turtles that are critically endangered owing to human activities.
Conservation of the genetic resources of endangered animals is crucial for future generations. The loggerhead sea turtle (Caretta caretta) is a critically endangered species, because of human hunting, hybridisation with other sea turtle species, and infectious diseases. In the present study, we established primary fibroblast cell lines from the loggerhead sea turtle, and showed its species specific chromosome number is 2n = 56, which is identical to that of the hawksbill and olive ridley sea turtles. We first showed that intensive hybridization among multiple sea turtle species caused due to the identical chromosome number, which allows existence of stable hybridization among the multiple sea turtle species. Expressions of human-derived mutant Cyclin-dependent kinase 4 (CDK4) and Cyclin D dramatically extended the cell culture period, when it was compared with the cell culture period of wild type cells. The recombinant fibroblast cell lines maintained the normal chromosome condition and morphology, indicating that, at the G1/S phase, the machinery to control the cellular proliferation is evolutionally conserved among various vertebrates. To our knowledge, this study is the first to demonstrate the functional conservation to overcome the negative feedback system to limit the turn over of the cell cycle between mammalian and reptiles. Our cell culture method will enable the sharing of cells from critically endangered animals as research materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.