Background— Arterial stiffness has been associated with an increased cardiovascular risk. The aim of this study was to investigate the interaction between arterial stiffness and atherosclerosis. Methods and Results— Mice with a mutation (C1039G +/− ) in the fibrillin-1 gene leading to fragmentation of the elastic fibers were crossbred with apolipoprotein E–deficient (ApoE −/− ) mice. Subsequently, ApoE −/− and ApoE −/− C1039G +/− mice were fed a Western-type diet for 10 or 20 weeks. Our results show that the interaction between arterial stiffness and atherosclerosis is bidirectional. On the one hand, arterial stiffness in ApoE −/− C1039G +/− mice increased more rapidly in the presence of atherosclerotic plaques. On the other hand, arterial stiffness promoted the development of larger and more unstable plaques in ApoE −/− C1039G +/− mice. The plaque area at the aortic root was increased 1.5- and 2.1-fold in ApoE −/− C1039G +/− mice after 10 and 20 weeks of Western-type diet, respectively. After 10 weeks of Western-type diet, plaques of ApoE −/− C1039G +/− mice showed increased apoptosis of smooth muscle cells, which was associated with a decrease in collagen content, an enlargement of the necrotic core, and an increase in macrophages. After 20 weeks of Western-type diet, the number of buried fibrous caps was increased in atherosclerotic lesions of ApoE −/− C1039G +/− mice, not only at the level of the aortic valves but also in the brachiocephalic artery and in the upper, middle, and lower thoracic aorta. Furthermore, acute plaque rupture was observed. Conclusion— These results indicate that fragmentation of the elastic fibers leads to increased vascular stiffness, which promotes features of multifocal plaque instability.
SummaryA number of clinical studies have shown protective effects of lactobacilli against Candida species in the gastrointestinal tract, the urogenital tract and the oral cavity, while others did not show clear effects. Evidence on the mode of action of lactobacilli against Candida is also still lacking. In this study, the anti‐Candida activity of the model probiotic strain Lactobacillus rhamnosus GG was explored in different assays to determine molecular interactions. We found that L. rhamnosus GG was able to interfere with Candida growth, morphogenesis and adhesion. These three aspects of Candida's physiology are all crucial to its opportunistic pathogenesis. In follow‐up assays, we compared the activity of L. rhamnosus GG wild‐type with its exopolysaccharide (EPS)‐deficient mutant and purified EPS to evaluate the involvement of this outer carbohydrate layer. Our data demonstrate that purified EPS can both interfere with hyphal formation and adhesion to epithelial cells, which indicates that EPS is part of a combined molecular mechanism underlying the antihyphal and anti‐adhesion mechanisms of L. rhamnosus GG.
Institutional repository IRUAThis article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/cod.13626 Surgical mask dermatitis caused by formaldehyde (releasers)during the COVID-19 pandemic.
Epilepsy is a neurological disease that affects more than 70 million people worldwide and is characterized by the presence of spontaneous unprovoked recurrent seizures. Existing anti-seizure drugs (ASDs) have side effects and fail to control seizures in 30% of patients due to drug resistance. Hence, safer and more efficacious drugs are sorely needed. Flavonoids are polyphenolic structures naturally present in most plants and consumed daily with no adverse effects reported. These structures have shown activity in several seizure and epilepsy animal models through allosteric modulation of GABA receptors, but also via potent anti-inflammatory action in the brain. As such, dietary flavonoids offer an interesting source for ASD and anti-epileptogenic drug (AED) discovery, but their pharmaceutical potential is often hampered by metabolic instability and low oral bioavailability. It has been argued that their drug-likeness can be improved via methylation of the free hydroxyl groups, thereby dramatically enhancing metabolic stability and membrane transport, facilitating absorption and highly increasing bioavailability. Since no scientific data is available regarding the use of methylated flavonoids in the fight against epilepsy, we studied naringenin (NRG), kaempferol (KFL), and three methylated derivatives, i.e., naringenin 7-O-methyl ether (NRG-M), naringenin 4',7-dimethyl ether (NRG-DM), and kaempferide (4'-O-methyl kaempferol) (KFD) in the zebrafish pentylenetetrazole (PTZ) seizure model. We demonstrate that the methylated flavanones NRG-DM and NRG-M are highly effective against PTZ-induced seizures in larval zebrafish, whereas NRG and the flavonols KFL and KFD possess only a limited activity. Moreover, we show that NRG-DM is active in two standard acute mouse seizure models, i.e., the timed i.v. PTZ seizure model and the 6-Hz psychomotor seizure model. Based on these results, NRG-DM is proposed as a lead compound that is worth further investigation for the treatment of generalized seizures and drug-resistant focal seizures. Our data therefore highlights the potential of methylated flavonoids in the search for new and improved ASDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.