Physically Unclonable Function (PUF) is a security primitive to address hardware security issues such as chip authentication, Intellectual Property (IP) protection etc. Conventional CMOS PUFs are built on delay (inverter chains, scan chains etc.) or memory structures (like SRAM). In this paper, we propose a novel PUF which works on the principles of spintronic Domain Wall Memory (DWM). Conventional DWM is limited by pinning due to process variations induced surface roughness of the nanowire. We exploit this limitation towards chip-authentication. We propose two flavors of PUFs namely relay-PUF and memory-PUF. The proposed PUFs show excellent entropy (measured by Hamming Distance). We also analyze metrics such as robustness, area and power of the DWM-PUFs. The memory-PUF indicated up to an order of magnitude reduction in power compared to SRAM PUF.
We propose spintronic physically unclonable functions (PUFs) to exploit security-specific properties of domain wall memory (DWM) for security, trust, and authentication. We note that the nonlinear dynamics of domain walls (DWs) in the physical magnetic system is an untapped source of entropy that can be leveraged for hardware security. The spatial and temporal randomness in the physical system is employed in conjunction with microscopic and macroscopic properties such as stochastic DW motion, stochastic pinning/depinning, and serial access to realize novel relay-PUF and memory-PUF designs. The proposed PUFs show promising results (∼50% interdie Hamming distance (HD) and 10% to 20% intradie HD) in terms of randomness, stability, and resistance to attacks. We have investigated noninvasive attacks, such as machine learning and magnetic field attack, and have assessed the PUFs resilience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.