We introduce a mathematical model of embodied consciousness, the Projective Consciousness Model (PCM), which is based on the hypothesis that the spatial field of consciousness (FoC) is structured by a projective geometry and under the control of a process of active inference. The FoC in the PCM combines multisensory evidence with prior beliefs in memory and frames them by selecting points of view and perspectives according to preferences. The choice of projective frames governs how expectations are transformed by consciousness. Violations of expectation are encoded as free energy. Free energy minimization drives perspective taking, and controls the switch between perception, imagination and action. In the PCM, consciousness functions as an algorithm for the maximization of resilience, using projective perspective taking and imagination in order to escape local minima of free energy. The PCM can account for a variety of psychological phenomena: the characteristic spatial phenomenology of subjective experience, the distinctions and integral relationships between perception, imagination and action, the role of affective processes in intentionality, but also perceptual phenomena such as the dynamics of bistable figures and body swap illusions in virtual reality. It relates phenomenology to function, showing the computational advantages of consciousness. It suggests that changes of brain states from unconscious to conscious reflect the action of projective transformations and suggests specific neurophenomenological hypotheses about the brain, guidelines for designing artificial systems, and formal principles for psychology.
It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his “autobiographical self”, the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices.
We summarize our recently introduced Projective Consciousness Model (PCM) (Rudrauf et al., 2017) and relate it to outstanding conceptual issues in the theory of consciousness. The PCM combines a projective geometrical model of the perspectival phenomenological structure of the field of consciousness with a variational Free Energy minimization model of active inference, yielding an account of the cybernetic function of consciousness, viz., the modulation of the field’s cognitive and affective dynamics for the effective control of embodied agents. The geometrical and active inference components are linked via the concept of projective transformation, which is crucial to understanding how conscious organisms integrate perception, emotion, memory, reasoning, and perspectival imagination in order to control behavior, enhance resilience, and optimize preference satisfaction. The PCM makes substantive empirical predictions and fits well into a (neuro)computationalist framework. It also helps us to account for aspects of subjective character that are sometimes ignored or conflated: pre-reflective self-consciousness, the first-person point of view, the sense of minenness or ownership, and social self-consciousness. We argue that the PCM, though still in development, offers us the most complete theory to date of what Thomas Metzinger has called “phenomenal selfhood.”
Giulio Tononi's Integrated Information Theory (IIT) proposes explaining consciousness by directly identifying it with integrated information. We examine the construct validity of IIT's measure of consciousness, phi (Φ), by analyzing its formal properties, its relation to key aspects of consciousness, and its co-variation with relevant empirical circumstances. Our analysis shows that IIT's identification of consciousness with the causal efficacy with which differentiated networks accomplish global information transfer (which is what Φ in fact measures) is mistaken. This misidentification has the consequence of requiring the attribution of consciousness to a range of natural systems and artifacts that include, but are not limited to, large-scale electrical power grids, gene-regulation networks, some electronic circuit boards, and social networks. Instead of treating this consequence of the theory as a disconfirmation, IIT embraces it. By regarding these systems as bearers of consciousness ex hypothesi, IIT is led towards the orbit of panpsychist ideation. This departure from science as we know it can be avoided by recognizing the functional misattribution at the heart of IIT's identity claim. We show, for example, what function is actually performed, at least in the human case, by the cortical combination of differentiation with integration that IIT identifies with consciousness. Finally, we examine what lessons may be drawn from IIT's failure to provide a credible account of consciousness for progress in the very active field of research concerned with exploring the phenomenon from formal and neural points of view.
Part I: The "Paradoxes" of Subjectivity I. IntroductoryWe use 'paradox' here loosely. We intend not genuine contradictions but aspects of consciousness that are familiar but difficult to model. The two main "paradoxes" of subjectivity to preoccupy us are these: First, the "subject" of consciousness-that to which the world appears-is elusive, so much so that some (e.g., Hume) have concluded that there is no such thing; and yet there is a stubborn intuition that we are immediately aware that the world appears to us and that consciousness has a 'for-me' aspect (Levine 2001) and not merely a 'what-it-is-like' aspect. Second, consciousness seems to involve a sort of duality within unity, an observer-observed. We offer a model that can resolve these and other "paradoxes" naturally. Our general approach, which is by no means unique to us, is threefold:(1) We begin with phenomenological descriptions of the relevant data, in this case, the structures of subjectivity. (2) We find a mathematical framework that gives us a coherent model of the structures as described.(3) We seek to develop an empirical framework that would allow us to assess whether the key features of the model non-trivially correlate with neural processes and structures already plausibly identified as being closely related to consciousness.In this paper we will confine ourselves to 1 and 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.