A novel composite consisting of hydroxyapatite (HAp) microparticles covalently coupled onto a silicone sheet was developed. Initially, an acrylic acid (AAc) -grafted silicone sheet with a 16.7 microg/cm(2) surface graft density was prepared by corona-discharge treatment. The surface of sintered, spherical, carbonated HAp particles with an average diameter of 2.0 microm was subsequently modified with amino groups. The amino group surface density of the HAp particles was calculated to be approximately one amino molecule per 1.0 nm(2) of particle surface area. These samples were characterized with Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy. After the formation of ammonium ionic bonds between both samples under aqueous conditions, they were reacted at 180 degrees C for 6 h in vacuo to form covalent bonds through a solid-phase condensation. The HAp particles were coupled to the AAc-grafted silicone surface by a covalent linkage. Further improvements in the adhesive and bioactive properties of the HAp-coated silicone material are expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.