The increasing interest in a healthy diet is stimulating innovative development of novel scientific products in the food industry. The viable lactic acid bacteria in fermented milk products, such as yoghurt, have been associated with increased lactose tolerance, a well-balanced intestinal microflora, antimicrobial activity, stimulation of the immune system and antitumoural, anticholesterolaemic and antioxidative properties in human subjects. Recently, we have studied a human Lactobacillus spp. strain that possesses antioxidative activity. The aim of the present pilot study was to develop goats' milk fermented with the human antioxidative lactobacilli strain, Lactobacillus fermentum ME-3, and to test the effect of the fermented probiotic goats' milk on oxidative stress markers (including markers for atherosclerosis) in human blood and urine and on the gut microflora. Twenty-one healthy subjects were assigned to two treatment groups: goats' milk group and fermented goats' milk group (150 g/d) for a period of 21 d. Consumption of fermented goats' milk improved anti-atherogenicity in healthy subjects: it prolonged resistance of the lipoprotein fraction to oxidation, lowered levels of peroxidized lipoproteins, oxidized LDL, 8-isoprostanes and glutathione redox ratio, and enhanced total antioxidative activity. The consumption of fermented goats' milk also altered both the prevalence and proportion of lactic acid bacteria species in the gut microflora of the subjects. We conclude that the goats' milk fermented with our special antioxidative lactobacilli strain Lactobacillus fermentum ME-3 exhibits anti-atherogenic effects.
Reactive oxygen and nitrogen species produced by metabolism and immune defenses can cause extensive damage to biomolecules. To counteract this damage, organisms rely on exogenous and endogenous antioxidants, although their relative importance in maintaining redox balance is unclear. We supplemented captive greenfinches with dietary antioxidants--carotenoids and vitamin E--and injected them with an inflammatory agent, phytohemagglutinin. Compared to controls, immune-challenged birds circulated more lipid peroxidation products but also increased total plasma antioxidativity. Carotenoid (but not vitamin E) supplementation generally reduced lipid peroxidation, but this did not compensate for the effects of immune activation. Levels of an endogenous antioxidant--uric acid--strongly contributed to plasma antioxidativity. We found no evidence that dietary antioxidants are immunostimulatory. These results demonstrate the antioxidant function of carotenoids in birds and show that simultaneous assessment of oxidative stress-driven damage, antioxidant barrier, and individual antioxidants is critical for explaining the potential costs of immune system activation.
SUMMARY
Costs accompanying immune challenges are believed to play an important role in life-history trade-offs and warranting the honesty of signal traits. We performed an experiment in captive greenfinches (Carduelis chlorisL.) in order to test whether and how humoral immune challenge with non-pathogenic antigen [sheep red blood cells (SRBC)] affects parameters of individual condition including intensity of coccidian infection, estimates of total antioxidant protection, plasma carotenoids and ability to mount a cell-mediated immune response. We also asked whether the potential costs of immune challenge can be alleviated by dietary carotenoid supplementation. None of the treatments affected intensity of coccidiosis. Humoral immune challenge suppressed the cell-mediated response to phytohemagglutinin (PHA), suggesting a trade-off between the uses of different arms of the immune system. Immune challenge reduced body-mass gain, but only among the carotenoid-depleted birds, indicating that certain somatic costs associated with immune system activation can be alleviated by carotenoids. No evidence for oxidative stress-induced immunopathological damages could be found because immune activation did not affect total antioxidant protection or carotenoid levels. Carotenoid supplementation inclined birds to fattening, indicating that lutein interfered with lipid metabolism. Altogether, our results support the hypotheses of biological importance of carotenoids and exemplify the overwhelming complexity of their integrated ecophysiological functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.