The paper presents a size-adapted assembly system for the automated precision assembly of active microsystems. The part sizes of the microsystems can reach centimeter range, but they must be assembled with an assembly accuracy of about a few micrometers. The results of a sensor guided assembly process using a 3D vision sensor are shown. This process reaches a positioning uncertainty of 1.2 \xm and an assembly uncertainty of 36 urn
This article presents (the most) recent results of the subprojects B4 and B8 of the Collaborative Research Center 516-Design and Manufacturing of Active Micro Systems-which are concerned with the assembly of active micro systems. While subproject B4 investigates sensor guided assembly processes, subproject B8 develops suitable assembly techniques on the basis of non-viscous adhesive systems (hot melts). Process development focuses on the suitability for automation, process times and the applicability of batch processes. The article discusses certain hot melt application techniques that are suitable for batch production, a sensor-guided assembly system as well as different approaches for heat conduction in an automated assembly process for hot melt coated micro components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.