Voltage-controlled room temperature isothermal reversible spin crossover switching of [Fe{H 2 B(pz) 2 } 2 (bipy)] thin films is demonstrated. This isothermal switching is evident in thin film bilayer structures where the molecular spin crossover film is adjacent to a molecular ferroelectric. The adjacent molecular ferroelectric, either polyvinylidene fluoride hexafluoropropylene or croconic acid (C 5 H 2 O 5), appears to lock the spin crossover [Fe{H 2 B(pz) 2 } 2 (bipy)] molecular complex largely in the low or high spin state depending on the direction of ferroelectric polarization. In both a planar two terminal diode structure and a transistor structure, the voltage controlled isothermal reversible spin crossover switching of [Fe{H 2 B(pz) 2 } 2 (bipy)] is accompanied by a resistance change and is seen to be nonvolatile, i.e., retained in the absence of an applied electric field. The result appears general, as the voltage controlled nonvolatile switching can be made to work with two different molecular ferroelectrics: croconic acid and polyvinylidene fluoride hexafluoropropylene.
Nonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon.
The III-nitride semiconductors have many attractive properties for field-emission vacuum electronics, including high thermal and chemical stability, low electron affinity, and high breakdown fields. Here, we report top-down fabricated gallium nitride (GaN)-based nanoscale vacuum electron diodes operable in air, with record ultralow turn-on voltages down to ∼0.24 V and stable high field-emission currents, tested up to several microamps for single-emitter devices. We leverage a scalable, top-down GaN nanofabrication method leading to damage-free and smooth surfaces. Gap-dependent and pressure-dependent studies provide new insights into the design of future, integrated nanogap vacuum electron devices. The results show promise for a new class of high-performance and robust, on-chip, III-nitride-based vacuum nanoelectronics operable in air or reduced vacuum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.