In pattern recognition, feature extraction techniques are widely employed to reduce the dimensionality of data and to enhance the discriminatory information. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are two most popular linear dimensionality reduction methods. However, PCA is not very effective for the extraction of the most discriminant features and LDA is not stable due to the small sample size problem. In this paper, we propose some new (linear and nonlinear) feature extractors based on maximum margin criterion (MMC). Geometrically, feature extractors based on MMC maximize the (average) margin between classes after dimensionality reduction. It is shown that MMC can represent class separability better than PCA. As a connection to LDA, we may also derive LDA from MMC by incorporating some constraints. By using some other constraints, we establish a new linear feature extractor that does not suffer from the small sample size problem, which is known to cause serious stability problems for LDA. The kernelized (nonlinear) counterpart of this linear feature extractor is also established in the paper. Our extensive experiments demonstrate that the new feature extractors are effective, stable, and efficient.
Recent advances in laser scanning hardware have allowed rapid generation of highresolution digital terrain models (DTMs) for large areas. However, the automatic discrimination of ground and non-ground light detection and ranging (lidar) points in areas covered by densely packed buildings or dense vegetation is difficult. In this paper, we introduce a new hierarchical moving curve-fitting filter algorithm that is designed to automatically and rapidly filter lidar data to permit automatic DTM generation. This algorithm is based on fitting a second-degree polynomial surface using flexible tiles of moving blocks and an adaptive threshold. The initial tile size is determined by the size of the largest building in the study area. Based on an adaptive threshold, non-ground points and ground points are classified and labelled step by step. In addition, we used a multi-scale weighted interpolation method to estimate the bareearth elevation for non-ground points and obtain a recovered terrain model. Our experiments in four study areas showed that the new filtering method can separate ground and non-ground points in both urban areas and those covered by dense vegetation. The filter error ranged from 4.08% to 9.40% for Type I errors, from 2.48% to 7.63% for Type II errors, and from 5.01% to 7.40% for total errors. These errors are lower than those of triangulated irregular network filter algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.