The Shigella are recently emerged clones of Escherichia coli, which have independently adopted an intracellular pathogenic lifestyle. We examined the molecular evolutionary consequences of this niche specialization by comparing the normalized, directional frequency profiles of unique polymorphisms within 2,098 orthologues representing the intersection of five E. coli and four Shigella genomes. We note a surfeit of AT-enriching changes (GC-->AT), transversions, and nonsynonymous changes in the Shigella genomes. By examining these differences within a temporal framework, we conclude that our results are consistent with relaxed or inefficient selection in Shigella owing to a reduced effective population size. Alternative interpretations, and the interesting exception of Shigella sonnei, are discussed. Finally, this analysis lends support to the view that nucleotide composition typically does not lie at mutational equilibrium but that selection plays a role in maintaining a higher GC content than would result solely from mutation bias. This argument sheds light on the enrichment of adenine and thymine in the genomes of bacterial endosymbionts where purifying selection is very weak.
BackgroundThe increasing frequency and complexity of cancer genomic profiling represents a challenge for the oncology community. Results from next-generation sequencing–based clinical tests require expert review to determine their clinical relevance and to ensure patients are stratified appropriately to established therapies or clinical trials.MethodsThe Sarah Cannon Research Institute UK/UCL Genomics Review Board (GRB) was established in 2014 and represents a multidisciplinary team with expertise in molecular oncology, clinical trials, clinical cancer genetics and molecular pathology. Prospective data from this board were collated.ResultsTo date, 895 patients have been reviewed by the GRB, of whom 180 (20%) were referred for clinical trial screening and 62 (7%) received trial therapy. For a further 106, a clinical trial recommendation was given.ConclusionsNumerous challenges are faced in implementing a GRB, including the identification of potential germline variants, the interpretation of variants of uncertain significance and consideration of the technical limitations of pathology material when interpreting results. These challenges are likely to be encountered with increasing frequency in routine practice. This GRB experience provides a model for the multidisciplinary review of molecular profiling data and for the linking of molecular analysis to clinical trial networks.
A tNGS panel approach is practically achievable, with acceptable success rates and turnaround times, in the context of a routine clinical service. Furthermore, it provides additional clinically and analytically relevant information, which is not available from single gene testing alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.