Modeling the spatial and temporal dynamics of soil temperature is deterministically complex due to the wide variability of several influential environmental variables, including soil column composition, soil moisture, air temperature, and solar energy. Landscape incident solar radiation is a significant environmental driver that affects both air temperature and ground-level soil energy loading; therefore, inclusion of solar energy is important for generating accurate representations of soil temperature. We used the U.S. Environmental Protection Agency’s Oregon Crest-to-Coast (O’CCMoN) Environmental Monitoring Transect dataset to develop and test the inclusion of ground-level solar energy driver data within an existing soil temperature model currently utilized within an ecohydrology model called Visualizing Ecosystem Land Management Assessments (VELMA). The O’CCMoN site data elucidate how localized ground-level solar energy between open and forested landscapes greatly influence the resulting soil temperature. We demonstrate how the inclusion of local ground-level solar energy significantly improves the ability to deterministically model soil temperature at two depths. These results suggest that landscape and watershed-scale models should incorporate spatially distributed solar energy to improve spatial and temporal simulations of soil temperature.
Low Impact Development (LID) is an alternative to conventional urban stormwater management practices, which aims at mitigating the impacts of urbanization on water quantity and quality. Plot and local scale studies provide evidence of LID effectiveness; however, little is known about the overall watershed scale influence of LID practices. This is particularly true in watersheds with a land cover that is more diverse than that of urban or suburban classifications alone. We address this watershed-scale gap by assessing the effects of three common LID practices (rain gardens, permeable pavement, and riparian buffers) on the hydrology of a 0.94 km 2 mixed land cover watershed. We used a spatially-explicit ecohydrological model, called Visualizing Ecosystems for Land Management Assessments (VELMA), to compare changes in watershed hydrologic responses before and after the implementation of LID practices. For the LID scenarios, we examined different spatial configurations, using 25%, 50%, 75% and 100% implementation extents, to convert sidewalks into rain gardens, and parking lots and driveways into permeable pavement. We further applied 20 m and 40 m riparian buffers along streams that were adjacent to agricultural land cover. The results showed overall increases in shallow subsurface runoff and infiltration, as well as evapotranspiration, and decreases in peak flows and surface runoff across all types and configurations of LID. Among individual LID practices, rain gardens had the greatest influence on each component of the overall watershed water balance. As anticipated, the combination of LID practices at the highest implementation level resulted in the most substantial changes to the overall watershed hydrology. It is notable that all hydrological changes from the LID implementation, ranging from 0.01 to 0.06 km 2 across the study watershed, were modest, which suggests a potentially limited efficacy of LID practices in mixed land cover watersheds.
Simulation models offer a way to achieve a comprehensive understanding of the consequences of alternative community planning scenarios. For example, a community might want to understand how a particular decision-such as expanding an urban growth boundary into lands zoned for agriculture-will result in ecological, economic, and social tradeoffs for various stakeholder groups. This chapter explores the utility of ENVISION, a spatially-explicit decision support framework that integrates various ecological and human systems model "plug-ins" for informing Ecosystem-Based Management (EBM) options. While ENVISION already has a reasonably large tool box of such plug-ins, its usefulness could be further extended to address a wider range of community and ecosystem types. We specifically examine how a suite of existing U.S. Environmental Protection Agency decision support tools (VELMA, HexSim, CORESET, Coral PF and others) could significantly extend ENVISION's plug-in toolbox for coastal ecosystem EBM, inclusive of terrestrial-marine interactions and restoration goals of coastal communities dependent on marine ecosystem services.
Landscape solar energy is a significant environmental driver, yet it remains complicated to model well. Several solar radiation models simplify the complexity of light by estimating it at discrete point locations or by averaging values over larger areas. These modeling approaches may be useful in certain cases, but they are unable to provide spatially distributed and temporally dynamic representations of solar energy across entire landscapes. We created a landscape-scale ground-level shade and solar energy model called Penumbra to address this deficiency. Penumbra simulates spatially distributed ground-level shade and incident solar energy at user-defined timescales by modeling local and distant topographic shading and vegetative shading. Spatially resolved inputs of a digital elevation model, a normalized digital surface model, and landscape object transmittance are used to estimate spatial variations in solar energy at user-defined temporal timesteps. The research goals for Penumbra included: 1) simulations of spatiotemporal variations of shade and solar energy caused by both objects and topographic features, 2) minimal user burden and parameterization, 3) flexible user defined temporal parameters, and 4) flexible external model coupling. We test Penumbra’s predictive skill by comparing the model’s predictions with monitored open and forested sites, and achieve calibrated mean errors ranging from -17.3 to 148.1 μmoles/m2/s. Penumbra is a dynamic model that can produce spatial and temporal representations of shade percentage and ground-level solar energy. Outputs from Penumbra can be used with other ecological models to better understand the health and resilience of aquatic, near stream terrestrial, and upland ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.