Domain adaptation aims to exploit a label-rich source domain for learning classifiers in a different label-scarce target domain. It is particularly challenging when there are significant divergences between the two domains. In the paper, we propose a novel unsupervised domain adaptation method based on progressive domain augmentation. The proposed method generates virtual intermediate domains via domain interpolation, progressively augments the source domain and bridges the source-target domain divergence by conducting multiple subspace alignment on the Grassmann manifold. We conduct experiments on multiple domain adaptation tasks and the results shows the proposed method achieves the state-of-the-art performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.