A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.
In this paper, an improved model for non-local band-to-band tunneling carrier transport is presented and compared to experimental measurement from GaAs tunnel junctions devices. By carefully taking into account the coupling between the conduction band and the light holes valence band, the model is able to predict, with realistic material parameters, the amplitude of the current density throughout the whole tunneling regime. The model suggests that elastic band-toband tunneling instead of trap-assisted-tunneling is the predominant mechanism in GaAs tunnel junctions, which is of great interest for better understanding and improving III-V multi-junction solar cells.
The aim of this study is to investigate the impact of multiband corrections on the current density of GaAs Tunnel Junctions (TJs) calculated with a refined yet simple Semi-Classical Interband Tunneling Model (SCITM). The non-parabolicity of the considered bands and the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.