The PECAN field campaign assembled a rich array of observations from lower-tropospheric profiling systems, mobile radars and mesonets, and aircraft over the Great Plains during June-July 2015 to better understand nocturnal mesoscale convective systems and their relationship with the stable boundary layer, the low-level jet, and atmospheric bores.
The field campaign, involving multiple aircraft and ground-based instruments, documented numerous long-lived mesoscale convective systems, many producing strong surface winds and exhibiting mesoscale rotation.
The evolution of a gust front to bore to solitary wave transition, and comprehensive information on the evolving nocturnal boundary layer (NBL) associated with this change, are described with analysis of radar and profiler measurements. The observations were obtained on 21 June 2002 in the Oklahoma panhandle during the International H2O Project. The evolution of this system, from a strong bore (initiated by a vigorous gust front) to a solitary wave, was observed over a 4-h period with Doppler radar and surface measurements. Detailed information on the mature bore structure was obtained by a cluster of profiling instruments including two boundary layer wind profilers, a lidar ceilometer, and a microwave profiling radiometer.
A strong bore was initiated by an extensive gust front that perturbed an incipient NBL whose development (prior to sunset) was enhanced by shading from the parent mesoscale convective system. At the time of bore formation, the NBL was about 300 m deep and exhibited a surface temperature about 4 K less than the afternoon maximum. Initially, the bore assumed kinematic properties similar to those of a gust front. As the NBL stabilized, the bore matured and exhibited undular formations over 30–60-km segments along the bore axis. A 30-km-wide cloud field accompanied the mature bore system within three hours of its formation. System-relative airflow within the cloud field was front-to-rear and exhibited a primary hydraulic jump updraft (4–5 m s−1 magnitude) within the bore core. The bore core exhibited a low, smooth cloud base, a cloud depth of 2.5 km, nearly adiabatic liquid water content, and pronounced turbulence. The maximum parcel displacements within the bore were about 2 km (sufficient for marginal convective initiation), and the net parcel displacement from before to after bore passage was 0.6–0.9 km.
The outbreak of 199 tornadoes on 27 April 2011, the most significant since the dawn of reliable records, was generated by parent storm systems ranging from quasi-linear convective systems to long-lived discrete supercell storms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.