Oscillating Water Column (OWC) wave energy converting system is one of the most widely used facilities all over the world. The air chamber is utilized to convert the wave energy into the pneumatic energy. The numerical wave tank based on the two-phase VOF model is established in the present study to investigate the operating performance of OWC air chamber. The RANS equations, standard k-turbulence model and dynamic mesh technology are employed in the numerical model. The effects of incident wave conditions and shape parameters on the wave energy converting efficiency are studied and the capability of the present numerical wave tank on the corresponding engineering application is validated.
The efficacy of perturbation approaches for short–long wave interactions is examined by considering a simple case of two interacting wave trains with different wavelengths. Frequency-domain solutions are derived up to third order in wave steepness using two different formulations: one employing conventional wave-mode functions only, and the other introducing a modulated wave-mode representation for the short-wavelength wave. For long-wavelength wave steepness and short-to-long wavelength ratio ε1 and ε3 respectively, the two results are shown to be identical for ε1 [Lt ] ε3 < 0.5. As ε1 approaches ε3, the conventional wave-mode approach converges slowly and eventually diverges for ε1 [Gt ] ε3. The loss of convergence is because the linear phase of conventional wave-mode functions is ineffective for modelling the modulated phase of the short wave. As expected, this difficulty can be removed by using a modulated wave-mode function for the short wave. On the other hand, for relatively large ε3 ∼O(1), the conventional wave-mode approach converges rapidly while the slowly varying interaction between the two waves cannot be accurately predicted by the present modulated wave-mode approach. These findings have important implications to (time-domain) numerical simulations of the nonlinear evolution of ocean wave fields, and suggest that a hybrid wave model employing both conventional (for large-ε3 interactions) and modulated (for small-ε3 interactions) wave-mode functions should be particularly effective.
In this study, a time-domain numerical method based on three-dimensional potential flow was developed to analyze the hydrodynamic characteristics of an inclined oscillating-water-column (OWC) wave energy converter (WEC). A finite element method was applied to solve the potential flow around and inside the OWC chamber. A turbine–chamber interaction was considered to take into account the pressure drop inside the OWC chamber, which is a nonlinear function of airflow speed via turbine operation. The instantaneous pressure drop was updated on the free-surface boundary condition inside the chamber in the time-domain to account for the coupling effect between the turbine and the chamber. The present numerical method was verified by comparing it with the model test results. The hydrodynamic characteristics of an inclined OWC chamber in terms of potential flow, such as the water column motion and the three-dimensional flow distribution around the chamber, were investigated. In terms of hydrodynamic performance, the energy conversion efficiency of the chamber showed a nonlinear response characteristic dependent on the incident wave height. In addition, numerical calculations were carried out to clarify the relationship between the main geometric parameters and the hydrodynamic response of the inclined OWC chamber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.