Two hundred forty potato samples with one or more symptoms of leaf mosaic, distortion, mottling and yellowing were collected between 2005 and 2008 from seven Iranian provinces. Forty-four of these samples tested positive with double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA) using a Potato virus S (PVS) polyclonal antibody. Of these 12 isolates of PVS were selected based on the geographical location for biological and molecular characterization. The full coat protein (CP) and 11K genes from 12 PVS isolates were PCR amplified, cloned and sequenced. All 12 PVS isolates showed mosaic symptoms on Nicotiana debneyii and N. tabacum cv. Whiteburly and local lesion on Chenopodium amaranticolor, C. quinoa and C. album. The Iranian isolates share between 93 and 100% pairwise nucleotide identity with other PVS(O) isolates. Based on maximum likelihood phylogenetic analysis coupled with pairwise identity analysis, we propose 15 genotypes for the PVS(O) strain and 3 genotypes for the PVS(A) strain.
Spiroplasma citri is a bacterial pathogen responsible for the economically important citrus stubborn disease. Sesame and citrus seeds serve as hosts for both S. citri and its leafhopper vector Circulifer haematoceps. To evaluate whether sesame could act as a reservoir for citrus-infecting strains or not, the genetic diversity among S. citri strains found in leafhoppers collected in citrus and citrus-free sesame fields was investigated. Among 26 periwinkle plants exposed to the collected C. haematoceps leafhoppers, 12 plants developed typical stubborn symptoms. All symptomatic periwinkles were polymerase chain reaction positive using S. citri-specific primer pairs targeting the spiralin and P89 genes. Phylogenetic trees based on spiralin gene sequence analysis indicated that the novel field-collected strains clustered with those belonging to two formerly defined S. citri groups (groups 6 and 1). In addition, our results strongly suggest that group 1 strains could be transmitted from sesame-infected plants to citrus trees by C. haematoceps, while group 6 strains may not infect citrus trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.