This paper presents the development of an acoustic energy harvester using an electromechanical Helmholtz resonator (EMHR). The EMHR consists of an orifice, cavity, and a piezoelectric diaphragm. Acoustic energy is converted to mechanical energy when sound incident on the orifice generates an oscillatory pressure in the cavity, which in turns causes the vibration of the diaphragm. The conversion of acoustic energy to electrical energy is achieved via piezoelectric transduction in the diaphragm of the EMHR. Moreover, the diaphragm is coupled with energy reclamation circuitry to increase the efficiency of the energy conversion. Lumped element modeling of the EMHR is used to provide physical insight into the coupled energy domain dynamics governing the energy reclamation process. The feasibility of acoustic energy reclamation using an EMHR is demonstrated in a plane wave tube for two power converter topologies. The first is comprised of only a rectifier, and the second uses a rectifier connected to a flyback converter to improve load matching. Experimental results indicate that approximately 30 mW of output power is harvested for an incident sound pressure level of 160 dB with a flyback converter. Such power level is sufficient to power a variety of low power electronic devices.
Magnetic core loss is an important concern for power converters. As the switching frequency increases and converter size reduced, the core loss will have significant impact to the converter efficiency and temperature. Accurate evaluation is important for magnetic design and converter loss estimation. The classic two-winding method is limited to low frequencies (usually below 1 MHz) because it is sensitive to phase discrepancy. In this paper, a new method is proposed for high-frequency core loss measurement that utilizes capacitive cancellation, which is suitable for HF and VHF core loss measurement. The new method greatly reduces the sensitivity to phase discrepancy, which is the dominating error source in the conventional two-winding method. An experimental demonstration is performed at 10 MHz, and the possible errors are analyzed in detail. With the proposed method, the high-frequency core loss can be accurately measured.Index Terms-Core loss measurement, ferrite, high frequency, magnetic integration, magnetic loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.