Capsule Summary An integrated, high resolution, data-driven regional modeling system has been recently developed for the Red Sea region and is being used for research and various environmental applications.
Formation of intermediate waters in the northern Red Sea was captured by Seagliders during the winter of 2016. The analysis is based on measurements collected by consequent deployments of Seaglider autonomous underwater vehicles along a 70 km transect, which was run repeatedly from the coast to midbasin during the period from October 2015 to May 2016. The observations revealed typical open ocean convection processes including a preconditioning phase followed by deep convection and spreading of the newly formed waters through lateral exchange. Winter conditions were characterized by surface cooling and enhanced evaporation, which were observed from late October until late February. During this period, the gradual surface cooling and salinity increase resulted in the weakening of the surface stratification. Recurrent cyclonic gyres forced by strong atmospheric events led to episodic convection and the formation of intermediate seawater typical of the upper overturning circulation cell of the Red Sea. Following deep mixing, a remarkable bloom of chlorophyll was detected at the top layer of the water column in response to the nutrients delivery from the deeper layers. The end of winter was marked by the intrusion of lower salinity water presumably advected from the south and the reestablishment of the general cyclonic circulation, typical for the northernmost part of the Red Sea. To the best of our knowledge, this is the first observation study of such convection events in the northern Red Sea.Plain Language Summary Water formation in the northern Red Sea during winter plays an important role in the basin's overturning circulation. Dense hypersaline water formed in the northern parts of the basin travels at intermediate depths towards the south and finally exits into the Indian Ocean. We describe for the first time a mechanism for the intermediate water formation, which was deduced from Seaglider records captured during the winter of 2016. We present the response of the upper seawater column to episodic atmospheric forcing events and the crucial role of cyclonic gyres in the convection process. During the period of observations, several events with simultaneous activation of the cyclonic gyre favored the winter surface cooling and led to open ocean convection. Vertical mixing in the water column supplied the near surface layer with nutrients, which caused a remarkable chlorophyll bloom. The deep mixing events occurred over very short periods, typically less than a week, and were followed by rapid restratification of the surface layer.
A multi-mission satellite remote sensing (MSRS) approach is explored to detect and track leaked oil from the Sabiti oil tanker accident that occurred in the central Red Sea on 11 October 2019 (RSOS-2019). The spilled oil spread rapidly and reached the coastal land near Jeddah, the second largest city of KSA, on 17 October. Different oil spill detection algorithms were implemented on SAR and optical sensor-based satellite images to track the oil spill. Sentinel-1 SAR images were most efficient at detecting the spread and thickness of RSOS-2019, but their spatio-temporal coverage greatly limits their use for tracking the oil movement. The spread and propagation of oil were well captured by Sentinel-2 images up to three weeks after the accident day, in agreement with the SAR images. MODIS successfully detected the narrow patch of oil that was leaked on the incident day and the widespread oil patches two days after. Landsat-8 RGB composite and thermal infrared images captured the oil spill on 13 October. By filtering clouds from the Meteosat images through sequential analysis, the spread and movement of the oil patches were efficiently tracked on 13 October. PlanetScope images available between 12 and 17 October enabled tracking of the oil near the coastal waters. The inferred oil spill movements are consistent with the ocean currents as revealed by a high-resolution regional ocean reanalysis. Our results demonstrate the potential of the MSRS approach to detect and track oil spills in the open and coastal waters of the Red Sea in near real-time.
Coastal oceans host 40% of the world population and amount to $1.5 trillion of the global economy. Studying, managing, and developing the coastal regions require decades-long information about their environment. Long-term ocean measurements are, however, lacking for most coastal regions and often global reanalyses are used instead. These are however coarse in nature and tuned for the global circulations. The Red Sea (RS) is a narrow basin connected to the Indian Ocean through the Bab-al-Mandab strait. Despite being the busiest commercial crossroad and hosting the world’s 3rd largest coral reef system, the RS lacks long-term observations. A recent increase in population and an unprecedented acceleration in governmental and industrial developments further emphasized the need for long-term datasets to support its development and the sustainability of its habitats, and to understand its response to a changing climate. Towards this end, we have generated a 20-year high-resolution reanalysis for the RS (RSRA) using a state-of-the-art ensemble data assimilation system incorporating available observations. Compared to global reanalyses, RSRA provides a markedly better description of the RS general and mesoscale circulation features, their variability, and trends. In particular, RSRA accurately captures the three-layer summer transport through the Bab-al-Mandab, simulated as two-layer transport by some global reanalyses. It further reproduces the seasonal anomalies, whereas global reanalyses misidentify some seasons as anomalous. Global reanalyses further overestimate the interannual variations in salinity, misrepresent the trend in temperature, and underestimate the trend in sea level. Our study clearly emphasizes the importance of generating dedicated high-resolution regional ocean reanalyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.