This paper presents the design and implementation of the most parameterisable FPGA-based skeleton for pairwise biological sequence alignment reported in the literature. The skeleton is parameterised in terms of the sequence symbol type i.e. DNA, RNA, or Protein sequences, the sequence lengths, the match score i.e. the score attributed to a symbol match, mismatch or gap, and the matching task i.e. the algorithm used to match sequences, which includes global alignment, local alignment and overlapped matching. Instances of the skeleton implement the Smith-Waterman and the Needleman-Wunsch algorithms. The skeleton has the advantage of being captured in the Handel-C language, which makes it FPGA platformindependent. Hence, the same code could be ported across a variety of FPGA families. It implements the sequence alignment algorithm in hand using a pipeline of basic processing elements, which are tailored to the algorithm parameters. The paper presents a number of optimisations built into the skeleton and applied at compile-time depending on the user-supplied parameters. These result in high performance FPGA implementations tailored to the algorithm in hand. For instance, actual hardware implementations of the Smith-Waterman algorithm for Protein sequence alignment achieve speed-ups of two orders of magnitude compared to equivalent standard desktop software implementations.
This paper explores the pros and cons of reconfigurable computing in the form of FPGAs for high performance efficient computing. In particular, the paper presents the results of a comparative study between three different acceleration technologies, namely, Field Programmable Gate Arrays (FPGAs), Graphics Processor Units (GPUs), and IBM’s Cell Broadband Engine (Cell BE), in the design and implementation of the widely-used Smith-Waterman pairwise sequence alignment algorithm, with general purpose processors as a base reference implementation. Comparison criteria include speed, energy consumption, and purchase and development costs. The study shows that FPGAs largely outperform all other implementation platforms on performance per watt criterion and perform better than all other platforms on performance per dollar criterion, although by a much smaller margin. Cell BE and GPU come second and third, respectively, on both performance per watt and performance per dollar criteria. In general, in order to outperform other technologies on performance per dollar criterion (using currently available hardware and development tools), FPGAs need to achieve at least two orders of magnitude speed-up compared to general-purpose processors and one order of magnitude speed-up compared to domain-specific technologies such as GPUs.
Quasi-Monte Carlo simulation is a special Monte Carlo simulation method that uses quasi-random or low-discrepancy numbers as random sample sets. In many applications, this method has proved advantageous compared to the traditional Monte Carlo simulation method, which uses pseudo-random numbers, thanks to its faster convergence and higher level of accuracy. This article presents the design and implementation of a massively parallelized Quasi-Monte Carlo simulation engine on an FPGA-based supercomputer, called Maxwell. It also compares this implementation with equivalent graphics processing units (GPUs) and general purpose processors (GPP)-based implementations. The detailed comparison between these three implementations (FPGA vs. GPP vs. GPU) is done in the context of financial derivatives pricing based on our Quasi-Monte Carlo simulation engine. Real hardware implementations on the Maxwell machine show that FPGAs outperform equivalent GPP-based software implementations by 2 orders of magnitude, with the speed-up figure scaling linearly with the number of processing nodes used (FPGAs/GPPs). The same implementations show that FPGAs achieve a ~ 3x speedup compared to equivalent GPU-based implementations. Power consumption measurements also show FPGAs to be 336x more energy efficient than CPUs, and 16x more energy efficient than GPUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.