Kendall's tau (τ ) has been widely used as a distribution-free measure of cross-correlation between two variables. It has been previously shown that persistence in the two involved variables results in the inflation of the variance of τ . In this paper, the full null distribution of Kendall's τ for persistent data with multivariate Gaussian dependence is derived, and an approximation to the full distribution is proposed. The effect of the deviation from the multivariate Gaussian dependence model on the distribution of τ is also investigated. As a demonstration, the temporal consistency and field significance of the cross-correlation between the North Hemisphere (NH) temperature time series in the period 1850-1995 and a set of 784 NH tree-ring width (TRW) proxies in addition to 105 NH tree-ring maximum latewood density (MXD) proxies are studied. When persistence is ignored, the original Mann-Kendall test gives temporally inconsistent results between the early half and the late half of the record. These temporal inconsistencies are largely eliminated when persistence is accounted for, indicating the spuriousness of a large portion of the identified cross-correlations. Furthermore, the use of the modified test in combination with a field significance test that is robust to spatial correlation indicates the absence of field significant cross-correlation in both halves of the record. These results have serious implications for the use of tree-ring data as temperature proxies, and emphasize the importance of utilizing the correct distribution of Kendall's τ in order to avoid the overestimation of the significance of cross-correlation between data that exhibit significant persistence.Key words Kendall's tau; autocorrelation; cross-correlation; persistence; probability distribution; distribution-free; nonparametric; field significance; Gaussian dependence; copula La distribution du tau de Kendall pour tester la significativité de la corrélation croisée dans des données persistantes Résumé Le tau de Kendall (τ ) a été largement utilisé comme mesure non paramétrique de corrélation croisée entre deux variables. Il a été précédemment montré que la persistance dans les deux variables considérées résulte en l'inflation de la variance de τ . Dans cet article, on dérive la distribution nulle complète du τ de Kendall pour des données persistantes avec une dépendance Gaussienne multivariée, et l'on propose une approximation de la distribution complète. L'effet de l'écart au modèle de dépendance Gaussienne multivariée sur la distribution de τ est également étudié. En guise de démonstration, la cohérence temporelle et le champ de significativité de la corréla-tion croisée entre des séries temporelles de températures de l'Hémisphère Nord (HN) pour la période 1850-1995, et un ensemble de 784 largeurs de cernes d'arbres ainsi que 105 valeurs de densité maximum des cernes du bois d'été sont étudiés. Lorsque la persistance est ignorée, le test original de Mann-Kendall donne des résultats temporellement incohérents entre la pr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.