This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five‐field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS‐RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ±3%/±3thinmathspacemm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/±3thinmathspacemm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms.PACS number: 87.53.Jw, 87.55.D‐, 87.55.dk
, and the results were compared between the treatment planning system (TPS) and RPC measurements.Results: RPC results show that the right/left, inferior/superior and posterior/anterior aspects of the coronal/sagittal and EBT2 film measurements were within 67%/64 mm of the TPS. The RPC thermoluminescent dosemeter measurements of the prostate and femoral heads were within 3% of the TPS. Conclusion: The RPC prostate phantom is a useful mechanism to evaluate spot scanning beam proton therapy within certain confidence levels. Advances in knowledge: The RPC anthropomorphic prostate phantom could be used to establish quality assurance of spot scanning proton beam for patients with prostate cancer.
BACKGROUND: RapidArc therapy, a complex form of intensity-modulated radiotherapy (IMRT), is now widely used to treat cancer patients. AIMS: This study aimed to investigate and compare the plan quality of IMRT and RapidArc techniques using various dosimetric indices to find the better treatment modality for treating patients with cervix cancer. MATERIALS AND METHODS: Thirteen cervical cancer patients treated with IMRT were selected for analysis and original plans were subsequently re-optimized using the RapidArc technique. Plans were generated such that dose of 5000 cGy was delivered in 25 equal fractions. Inverse planning was done by Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system for 15 MV photon beams from computed tomographic data. Double arcs were used for RapidArc plans. Quality of treatment plans was evaluated by calculating conformity index (CI), homogeneity index (HI), gradient index (GI), coverage, and unified dosimetry index (UDI) for each plan. RESULTS AND CONCLUSION: RapidArc resulted in better planning target volume (PTV) coverage as is evident from its superior conformation number, coverage, CI, HI, GI, and UDI. Regarding organs at risk (OARs), RapidArc plans exhibit superior organ sparing as is evident from integral dose comparison. Difference between both techniques was determined by statistical analysis. For all cases under study, modest differences between IMRT and RapidArc treatment were observed. RapidArc-based treatment planning is safer with similar planning goals compared to the standard fixed IMRT technique. This study clearly demonstrated that favorable dose distribution in PTV and OARs was achieved using RapidArc technique, and hence, the risk of damage to normal tissues is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.