BackgroundDiffusion-weighted imaging (DWI) along with the calculation of apparent diffusion coefficient (ADC), is a novel, non-invasive, and reliable technique of choice for accurate assessment and for the treatment planning of different types of brain tumors. It is more advantageous in the distinction and differentiation of benign from malignant meningiomas on the basis of ADC values.PurposeTo investigate the utility of DW magnetic resonance imaging (MRI), and to compare the apparent diffusion coefficient (ADC) obtained at two b-values for an authentic and preoperative characterization of meningiomas.Material and MethodsTwenty-six patients with clinically diagnosed or histologically verified meningioma (18 benign and 8 malignant) underwent imaging including DWI at 1.5 T. DW images were obtained at b = 1000 s/mm2 and b = 2000 s/mm2, ADC maps were generated at both the b-values. Signal intensities (SIs) and ADCs for solid tumorous tissues, contralateral normal tissues, and peritumoral edema were calculated and normalized ADC (NADC) ratio were determined for tumorous tissues. SI scores, ADC maps, and ADC values were analyzed visually and quantitatively, and were compared at both the b-values.ResultsDW images at b = 2000 s/mm2 were more conspicuity (either hyperintense or hypointense) with improved contrast. The mean ADC of malignant meningiomas (0.64 ± 0.05 and 0.42 ± 0.03) was significantly lower (P < 0.05) as compared with benign meningiomas (1.04 ± 0.12 and 0.80 ± 0.07) at both the b-values. Mean NADC ratio in the malignant type was also significantly lower (P < 0.05) than the benign type at both the b-values. Mean ADC values for peritumoral edema do not differ between benign and malignant meningiomas.Conclusion1.5-T DWI using high b-values improved our ability to differentiate benign from malignant meningiomas. DWI may play an important role in the preoperative radiological evaluation and the recognition of these types for proper surgical treatment.
Anion exchange membranes are highly versatile and nowadays have many applications, ranging from water treatment to sensing materials. The preparation of anion exchange membranes (AEMs) from brominated poly(2,6-dimethyl-1,6-phenylene oxide) (BPPO) and methyl(diphenyl)phosphine (MDPP) for electrodialysis was performed. The physiochemical properties and electrochemical performance of fabricated membranes can be measured by changing MDPP contents in the membrane matrix. The influence of a quaternary phosphonium group associated with the removal of NaCl from water is discussed. The prepared membranes have ion exchange capacities (IEC) 1.09–1.52 mmol/g, water uptake (WR) 17.14%–21.77%, linear expansion ratio (LER) 7.96%–11.86%, tensile strength (TS) 16.66–23.97 MPa and elongation at break (Eb) 485.57%–647.98%. The prepared anion exchange membranes were employed for the electrodialytic removal of 0.1 M NaCl aqueous solution at a constant applied voltage. It is found that the reported membranes could be the promising candidate for NaCl removal via electrodialysis.
This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five‐field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS‐RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ±3%/±3thinmathspacemm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/±3thinmathspacemm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms.PACS number: 87.53.Jw, 87.55.D‐, 87.55.dk
, and the results were compared between the treatment planning system (TPS) and RPC measurements.Results: RPC results show that the right/left, inferior/superior and posterior/anterior aspects of the coronal/sagittal and EBT2 film measurements were within 67%/64 mm of the TPS. The RPC thermoluminescent dosemeter measurements of the prostate and femoral heads were within 3% of the TPS. Conclusion: The RPC prostate phantom is a useful mechanism to evaluate spot scanning beam proton therapy within certain confidence levels. Advances in knowledge: The RPC anthropomorphic prostate phantom could be used to establish quality assurance of spot scanning proton beam for patients with prostate cancer.
All these factors indicate that coverage for PTV was nearly identical but dose to organs-at-risk (OARs) was lower in the step and shoot technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.