BackgroundIncreasing soil salinization has a detrimental effect on agricultural productivity.Therefore, strategies are needed to induce salinity-tolerance in crop species for sustainable foodproduction. γ-aminobutyric acid (GABA) plays a key role in regulating plant salinity stresstolerance. However, it remains largely unknown how mungbean plants (Vigna radiata L.) respondto exogenous GABA under salinity stress.MethodsThus, we evaluated the effect of exogenous GABA (1.5 mM) on the growth and physiobiochemicalresponse mechanism of mungbean plants to saline stress (0-, 50-, and 100 mM [NaCland Na2SO4, at a 1:1 molar ratio]).ResultsIncreased saline stress adversely affected mungbean plants' growth and metabolism. Forinstance, leaf-stem-root biomass (34- and 56%, 31- and 53%, and 27- and 56% under 50- and 100mM, respectively]) and chlorophyll concentrations declined. The carotenoid level increased (10%)at 50 mM and remained unaffected at 100 mM. Hydrogen peroxide (H2O2), malondialdehyde(MDA), osmolytes (soluble sugars, soluble proteins, proline), total phenolic content, andenzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase(POD), glutathione reductase (GTR), and polyphenol oxidation (PPO) were significantlyincreased. In leaves, salinity caused a significant increase in Na+ concentration but a decrease inK+ concentration, resulting in a low K+/Na+ concentration (51- and 71% under 50- and 100- mMstress). Additionally, nitrogen concentration and the activities of nitrate reductase (NR) andglutamine synthetase (GS) decreased significantly. The reduction in glutamate synthase (GOGAT)activity was only significant (65%) at 100 mM stress. Exogenous GABA decreased Na+, H2O2,and MDA concentrations but enhanced photosynthetic pigments, K+ and K+/Na+ ratio, Nmetabolism, osmolytes, and enzymatic antioxidant activities, thus reducing salinity-associatedstress damages, resulting in improved growth and biomass.ConclusionExogenous GABA may have improved the salinity tolerance of mungbean plants by maintaining their morpho-physiological responses and reducing the accumulation of harmfulsubstances under salinity. Future molecular studies can contribute to a better understanding of themolecular mechanisms by which GABA regulates mungbean salinity tolerance.
Asbestos is an industrially important microfiber present in cement industries and some mining sites and is very toxic to plant growth and development, but it has been neglected over the years. Therefore, this study was conducted to investigate the hazardous effects of asbestos on the growth and development of two important grass species (switchgrass and timothy grass). In order to mitigate the toxic effects of asbestos, a compost (bio-fertilizer) was also used. The asbestos soil samples were collected within a 10 km area of a cement factory. The results revealed that the asbestos-contaminated soils displayed a considerable increment in heavy metal uptake including chromium (Cr), manganese (Mn), vanadium (V), arsenic (As), and barium (Ba), which led to stunted plant growth. Consequently, the activities of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) were stimulated to kept the redox balance under control. Among all the contaminated soils, the soil that was taken within a 0 Km area, closest to the cement factory, was the most toxic one. However, a compost amendment (25%) as a bio-fertilizer substantially reduced the toxic effects of asbestos fiber on the overall growth and development of plants, by reducing the metals’ uptake. Moreover, it was found that the roots of both grass species experienced higher heavy metal accumulation relative to the shoots. Collectively, it can be proposed that the studied grass species can be used for phytoextraction purposes, since both of them absorbed the heavy metals from the asbestos-contaminated soils.
Cyperus esculentus L. var. sativus Boeck (commonly called Chufa) is a perennial species that produces nutritious underground tubers and contributes to the diet and health of human worldwide. However, it is salt-sensitive and its adaptation to salinity stress remains an enigma. Naphthaleneacetic acid (NAA) plays a vital role in regulating plant salt stress tolerance. Thus, we aimed to investigate the impact of NAA (150 mg/L) application on growth and physio-biochemical response mechanisms of Chufa plants to different levels of salinity stress (0-, 90-, and 180 mM of alkaline stress ([1:1 ratio of Na2CO3 and NaHCO3]). In response to increasing stress levels, shoot-root growth decreased, whereas malondialdehyde (MDA), hydrogen peroxide (H2O2), osmolytes (soluble protein, proline, and soluble sugars), and activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) significantly increased. Alkalinity led to significant increase in Na+ and Cl–, but decrease in Mg2+ concentration in both roots and leaves; however, K+ decreased significantly in leaves under both stresses. Additionally, NO3−and. levels, nitrate reductase (NR) activities, and glutamate synthase (GOGAT) decreased significantly. However, glutamine synthetase (GS) increased non-significantly at 90 mM but declined at 180 mM. Foliar NAA application reduced Na+ and Cl-, MDA, and H2O2 but increased photosynthetic pigments, K+ and Mg2+, osmolytes, nitrogen (N) metabolism, and upregulating the enzymatic antioxidant system to reduce oxidative stress under alkaline conditions. Hence, our findings manifest that NAA application is an effective strategy that can be utilized to enhance tolerance of chufa plants to alkaline stress. Future studies should explore whether NAA can positively alter the nutrient composition of chufa tubers at deeper molecular levels, which might offer solutions to nutritious problems in developing countries.
Wheat is the third most producing crop in China after maize and rice. In order to enhance the nitrogen use efficiency (NUE) and grain yield of winter wheat, a two-year field experiment was conducted to investigate the effect of different nitrogen ratios and doses at various development stages of winter wheat (Triticum aestivum L.). A total of five N doses (0, N75, N150, N225, and N300 kg ha−1) as main plots and two N ratios were applied in split doses (50%:50% and 60%:40%, referring to 50% at sowing time and 50% at jointing stage, 50% at sowing time + 50% at flowering stage, 50% at sowing time + 50% at grain filling stage, and 60% + 40% N ratio applied as a 60% at sowing time and 40% at jointing stage, 60% at sowing time and 40% at flowering stage, and 60% at sowing time and 40% at grain filling stage in subplots). The results of this study revealed that a nitrogen dose of 225 kg ha−1 significantly augmented the plant height by 27% and above ground biomass (ABG) by 24% at the grain filling stage, and the leaf area was enhanced by 149% at the flowering stage under 60 + 40% ratios. Furthermore, the N225 kg ha−1 significantly prompted the photosynthetic rate by 47% at the jointing and flowering stages followed by grain filling stage compared to the control. The correlation analysis exhibited the positive relationship between nitrogen uptake and nitrogen content, chlorophyll, and dry biomass, revealing that NUE enhanced and ultimately increased the winter wheat yield. In conclusion, our results depicted that optimizing the nitrogen dose (N225 kg/ha−1) with a 60% + 40% ratio at jointing stage increased the grain yield and nitrogen utilization rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.