Skin ulcers is one of the complications of diabetes. At present, the treatment of diabetic skin wound is still not satisfactory, and the efficiency of drug delivery is limited by the depth...
In recent years, transdermal drug delivery based on microneedles (MNs) technology has received extensive attention, which offers a safer and painless alternative to hypodermic needle injections. They can pierce the stratum corneum and deliver drugs to the epidermis and dermis-structures of skin, showing prominent properties such as minimally invasiveness, bypassing first-pass metabolism, and can be self-administered. A range of materials has been used to fabricate MNs, such as silicon, metal, glass, and polymers. Among them, polymer MNs have gained increasing attention from pharmaceutical and cosmetic companies as one of the promising drug delivery methods. MN products have recently become available on the market, and some of them are under evaluation for efficacy and safety. This paper focuses on the current state of polymer MNs in drug transdermal delivery. The materials and methods for the fabrication of polymer MNs and their drug administration are described. The recent progress of polymer MNs for treatment of cancer, vaccine delivery, blood glucose regulation, androgenetic alopecia, obesity, tissue healing, myocardial infarction, and gout are reviewed. The challenges of MNs technology are summarized and the future development trend of MNs is also prospected.
Silver nanoparticles (AgNPs) stabilized by sodium carboxymethylcellulose (Na‐CMC) with degree of substitution (DS) 0.65‐0.90 and degree of polymerization (DP) 200‐600 were synthesized by photochemical method. The structural, physico‐chemical, and physico‐mechanical properties as well as antimicrobial activity of polymer films containing the Na‐CMC and AgNPs were studied. The shape, quantity, and size of the AgNPs embedded into the Na‐CMC films were determined by UV‐Vis spectroscopy, ZETASIZER Nano ZS, atomic force microscopy and transmission electron microscopy. It was found that the increase of silver nitrate concentration in solution of Na‐CMC followed by photoirradiation leads to the change of size and shape of AgNPs. The AgNPs in the range of size from 5 to 35 nm were found to enhance the microbicidal activities of the Na‐CMC films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.