BackgroundRice genome sequencing projects have generated remarkable amount of information about genes and genome architecture having tremendous potential to be utilized in both basic and applied research. Success in transgenics is paving the way for preparing a road map of functional genomics which is expected to correlate action of a gene to a trait in cellular and organismal context. However, the lack of a simple and efficient method for transformation and regeneration is a major constraint for such studies in this important cereal crop.ResultsIn the present study, we have developed an easy, rapid and highly efficient transformation and regeneration protocol using mature seeds as explants and found its successful applicability to a choice of elite indica rice genotypes. We have optimized various steps of transformation and standardized different components of the regeneration medium including growth hormones and the gelling agent. The modified regeneration medium triggers production of large number of shoots from smaller number of calli and promotes their faster growth, hence significantly advantageous over the existing protocols where the regeneration step requires maximum time. Using this protocol, significantly higher transformation efficiency (up to 46%) and regeneration frequency (up to 92% for the untransformed calli and 59% for the transformed calli) were achieved for the four tested cultivars. We have used this protocol to produce hundreds of independent transgenic lines of different indica rice genotypes. Upon maturity, these transgenic lines were fertile thereby indicating that faster regeneration during tissue culture did not affect their reproductive potential.ConclusionsThis speedy, yet less labor-intensive, protocol overcomes major limitations associated with genetic manipulation in rice. Moreover, our protocol uses mature seeds as the explant, which can easily be obtained in quantity throughout the year and kept viable for a long time. Such an easy, efficient and generalized protocol has the potential to be a major tool for crop improvement and gene-function studies on the model monocot plant rice.
Cytokinins play a significant role in determining grain yield in plants. Cytokinin oxidases catalyse irreversible degradation of cytokinins and hence modulate cellular cytokinin levels. Here, we studied the role of an inflorescence meristem-specific rice cytokinin oxidase - OsCKX2 - in reducing yield penalty under salinity stress conditions. We utilized an RNAi-based approach to study the function of OsCKX2 in maintaining grain yield under salinity stress condition. Ultra-performance liquid chromatography-based estimation revealed a significant increase in cytokinins in the inflorescence meristem of OsCKX2-knockdown plants. To determine if there exists a correlation between OsCKX2 levels and yield under salinity stress condition, we assessed the growth, physiology and grain yield of OsCKX2-knockdown plants vis-à-vis the wild type. OsCKX2-knockdown plants showed better vegetative growth, higher relative water content and photosynthetic efficiency and reduced electrolyte leakage as compared with the wild type under salinity stress. Importantly, we found a negative correlation between OsCKX2 expression and plant productivity as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions. These results suggest that OsCKX2, via controlling cytokinin levels, regulates floral primordial activity modulating rice grain yield under normal as well as abiotic stress conditions.
Crop plants face a multitude of diverse abiotic and biotic stresses in the farmers' fields. Although there now exists a considerable knowledge of the underlying mechanisms of response to individual stresses, the crosstalk between response pathways to various abiotic and biotic stresses remains enigmatic. Here, we investigated if the cytotoxic metabolite methylglyoxal (MG), excess of which is generated as a common consequence of many abiotic and biotic stresses, may serve as a key molecule linking responses to diverse stresses. For this, we generated transgenic rice plants overexpressing the entire two-step glyoxalase pathway for MG detoxification. Through assessment of various morphological, physiological and agronomic parameters, we found that glyoxalase-overexpression imparts tolerance towards abiotic stresses like salinity, drought and heat and also provides resistance towards damage caused by the sheath blight fungus (Rhizoctonia solani) toxin phenylacetic acid. We show that the mechanism of observed tolerance of the glyoxalase-overexpressing plants towards these diverse abiotic and biotic stresses involves improved MG detoxification and reduced oxidative damage leading to better protection of chloroplast and mitochondrial ultrastructure and maintained photosynthetic efficiency under stress conditions. Together, our findings indicate that MG may serve as a key link between abiotic and biotic stress response in plants.
Marker-free transgenic lines of rice are developed with enhanced trehalose accumulation that is associated with improved grain yield under salinity, sodicity, and drought stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.