A facile method for the synthesis of highly fluorinated reduced graphene oxide from graphene oxide using BF3-OEt2 solution and alkylthiol/alkylamine on the Gram scale has been described using a detailed mechanism. The maximum fluorination was as high as 38 wt% and the fluorinated reduced graphene oxide produced has great wettability and high insulating properties.
The emergence of stretchable devices that combine with conductive properties offers new exciting opportunities for wearable applications. Here, a novel, convenient and inexpensive solution process was demonstrated to prepare in situ silver (Ag) or platinum (Pt) nanoparticles (NPs)-embedded rGO hybrid materials using formic acid duality in the presence of AgNO3 or H2PtCl6 at low temperature. The reduction duality of the formic acid can convert graphene oxide (GO) to rGO and simultaneously deposit the positively charged metal ion to metal NP on rGO while the formic acid itself is converted to a CO2 evolving gas that is eco-friendly. The AgNP-embedded rGO hybrid electrode on an elastomeric substrate exhibited superior stretchable properties including a maximum conductivity of 3012 S cm-1 (at 0 % strain) and 322.8 S cm-1 (at 35 % strain). Its fabrication process using a printing method is scalable. Surprisingly, the electrode can survive even in continuous stretching cycles.
Isoindolinones are the core structures of many natural products, drug molecules and it is useful in material science as fluorescent probe and synthetic dyes. Fused analogue of this blending lactam...
The present review aims to review a vast body of literature on diverse synthetic methodology, biological, and fluorescence activities of pyrrolo/indolo[3,2-c]coumarin derivatives as published during the last 20 years. Synthesized...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.