Various new technologies have been applied for developing vaccines against various animal diseases. Virus-like particle (VLP) vaccine technology was used for manufacturing the porcine circovirus type 2 and RNA particle vaccines based on an alphavirus vector for porcine epidemic diarrhea (PED). Although VLP is classified as a killed-virus vaccine, because its structure is similar to the original virus, it can induce long-term and cell-mediated immunity. The RNA particle vaccine used a Venezuela equine encephalitis (VEE) virus gene as a vector. The VEE virus partial gene can be substituted with the PED virus spike gene. Recombinant vaccines can be produced by substitution of the target gene in the VEE vector. Both of these new vaccine technologies made it possible to control the infectious disease efficiently in a relatively short time.
Cell-mediated xenograft rejection, including NK cells and CD8 + CTL, is a major obstacle in successful pig-to-human xenotransplantation. Human CD8 + CTL and NK cells display high cytotoxicity for pig cells, mediated at least in part by the Fas/FasL pathway. To prevent cellmediated xenocytotoxicity, a membrane-bound form of human FasL (mFasL) was generated as an inhibitor for CTL and NK cell cytotoxicity that could not be cleaved by metalloproteinase to produce putative soluble FasL. We produced two healthy transgenic pigs harboring the mFasL gene via somatic cell nuclear transfer (SCNT). In a cytotoxicity assay using transgenic clonal cell lines and transgenic pig ear cells, the rate of CD8 + CTLmediated cytotoxicity was significantly reduced in transgenic pig's ear cells compared with that in normal minipig fetal fibroblasts. Our data indicate that grafts of transgenic pigs expressing membrane-bound human FasL control the cellular immune response to xenografts, creating a window of opportunity to facilitate xenograft survival.
Porcine cytomegalovirus (PCMV) is a pathogen that must be removed from pigs for use as organ donors in xenotransplantation. Recently, it has been found that when donor pigs are infected with PCMV, a pig-to-non-human-primate xenotransplantation lower transplant survival by 2-3 times. Therefore, highly sensitive methods are needed to maintain designated pathogen free (DPF) pig and screen for xenografts. The purpose of this study was to evaluate the performance of commercially available method with one-tube nested real-time PCR assay to quickly detect PCMV infection in clinical samples and compare the results with those of sequence analysis. Molecular diagnostic methods were used to evaluate 127 samples, including tissues and blood samples from pigs suspected of PCMV infection. The detection rate for positive PCMV was 38.6% (n = 49), 23.6% (n = 30), and 12.6% (n = 16) in one-tube nested real-time PCR, nested PCR, and conventional PCR methods, respectively. All PCMV-positive samples in conventional PCR or nested PCR methods were also positive in the one-tube nested real-time PCR assay. All the PCR products in the three methods were checked for amplification of PCMV gene by PCR and subsequent direct sequencing. The results of one-tube nested real-time PCR were found to be consistent with those of sequence analysis for all the samples and showed good agreement (κ = 1). Our study found that the one-tube nested real-time PCR assay is more sensitive than the other two methods. This assay required approximately 1.5 h for completion. Therefore, we concluded that one-tube nested real-time PCR assay is a fast and reliable method for the characterizing pathogen responsible for PCMV infection.
Positive transcription elongation factor b (P-TEFb) is a RNA polymerase II carboxyl-terminal domain (Pol II CTD) kinase that phosphorylates Ser2 of the CTD and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in mammalian early developmental events. In this study, using immunocytochemical analyses, we found that the P-TEFb components, CDK9, Cyclin T1 and Cyclin T2 were localized to nuclear speckles, as well as in nucleolar-like bodies in pig germinal vesicle oocytes. Using nascent RNA labeling and small molecule inhibitors, we showed that inhibition of CDK9 activity abolished the transcription of GV oocytes globally. Moreover, using fluorescence in situ hybridization, in absence of CDK9 kinase activity the production of ribosomal RNAs was impaired. We also presented the evidences indicating that P-TEFb kinase activity is essential for resumption of oocyte meiosis and embryo development. Treatment with CDK9 inhibitors resulted in germinal vesicle arrest in maturing oocytes in vitro. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when in vitro produced zygotes were treated with CDK9 inhibitors, their development beyond the 4-cell stage was impaired. In these embryos, inhibition of CDK9 abrogated global transcriptional activity and rRNA production. Collectively, our data suggested that P-TEFb kinase activity is crucial for oocyte maturation, embryo development and regulation of RNA transcription in pig.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.