The predominant sand fly species collected inside houses in Kfar Adumim, an Israeli village in the Judean Desert that is a focus of cutaneous leishmaniasis, was Phlebotomus papatasi, which was also caught attempting to bite humans. Phlebotomus sergenti, which is rarely seen inside houses, constituted the predominant sand fly species in caves near the village. Leishmania isolates from Ph. sergenti and humans typed as Leishmania tropica. Sand fly and human isolates produced similar small nodular cutaneous lesions in hamsters. Isolates produced excreted factor (EF) of subserotypes A(9) or A(9)B(2), characteristic of L. tropica and reacted with L. tropica-specific monoclonal antibodies. Isoenzyme analysis consigned the strains to the L. tropica zymodemes MON-137 and MON-275. Molecular genetic analyses confirmed the strains were L. tropica and intraspecific microheterogeneity was observed. Genomic fingerprinting using a mini-satellite probe separated the L. tropica strains into two clusters that were not entirely congruent with geographic distribution. These results support the heterogeneous nature of L. tropica and incriminate Ph. sergenti as its vector in this Judean Desert focus.
During the past 20 years, cutaneous leishmaniasis has emerged as a major public health threat in Morocco. We describe distribution of Leishmania major and L. tropica in Morocco and a new focus of cutaneous leishmaniasis due to L. infantum. We recommend using molecular techniques to diagnose suspected leishmaniasis cases.
BackgroundLeishmaniases are divided into cutaneous (CL) and visceral leishmaniasis (VL). In the Old World, CL is caused by Leishmania (L.) major, L. tropica and L. aethiopica. L. tropica can also visceralize and cause VL. In India, the large epidemics of VL are caused by L. donovani and cases of CL are caused by L. major and L. tropica. However, strains of L. tropica have also been isolated from Indian cases of VL.This study was done to see if Indian strains of L. tropica isolated from human cases of CL are genetically identical to or different from Indian strains of L. tropica isolated from human cases of VL and to see if any genetic differences found correlated with clinical outcome presenting as either CL or VL.MethodsMultilocus microsatellite typing (MLMT), employing 12 independent genetic markers specific to L. tropica, was used to characterize and identify eight strains of L. tropica isolated from human cases of CL examined in clinics in Bikaner City, Rajasthan State, north-west India. Their microsatellite profiles were compared to those of 156 previously typed strains of L. tropica from various geographical locations that were isolated from human cases of CL and VL, hyraxes and sand fly vectors.ResultsBayesian, distance-based and factorial correspondence analyses revealed two confirmed populations: India/Asia and Israel/Palestine that subdivided, respectively, into two and three subpopulations. A third population, Africa/Galilee, as proposed by Bayesian analysis was not supported by the other applied methods. The strains of L. tropica from Bikaner isolated from human cases of CL fell into one of the subpopulations in the population India/Asia together with strains from other Asian foci. Indian strains isolated from human cases of VL fell into the same sub-population but were not genetically identical to the Bikaner strains of L. tropica.ConclusionsIt seems that the genetic diversity encountered between the two groups of Indian strains is mainly owing to their geographical origins rather than their different times of isolation. Also, the genetic differences seen between the dermatotropic and viscerotropic strains might be connected with the difference in pathogenicity.
Background Intercellular adhesion and biofilm production by Staphylococcus aureus makes these bacteria resistant to antimicrobial therapy. Here, Methicillin-resistant Staphylococcus aureus (MRSA) strains were characterized and the prevalence of genes encoding adhesion factors and biofilm formation was determined. Results All 248 MRSA isolates identified by cefoxitin disc diffusion were positive for the mec A gene. SCC mec -IV was the most frequently detected genotype (92.7%) and SCC mec -IVa was also very prevalent (84.3%). The quantitative microtiter plate assay showed that all the isolates were able to produce biofilm with levels ranging from high (21%) to moderate (46.4%) to low (32.7%). All the strains possessed the icaD/icaA genes and produced biofilm ( P < 0.05). None of the isolates possessed the bap gene . Furthermore, 94.8% of the isolates were positive for eno, 80.2% for clfA and for clfB , 78.2% for fnbA , 76.2% for ebps , 62.2% for fib , 39.9% for cna and 29.0% for fnbB. Also, nearly 69.8% of the isolates were positive for the gene sarA . All four agr groups were present: agr group 1 was predominant with 39.5%; agr group 3. agr group 2 and 3 strains carried more toxin-producing genes, and frequently produced more toxin. Sixty-six (26.6%) of the strains were multidrug resistant. All were vancomycin sensitive. Agr group I is more resistant to ciprofloxacin and gentamicin while agr group III is more resistant to erythromycin. Maximum sensitivity was to gentamicin and SXT, and they could be considered drugs of choice for controlling MRSA mediated infections in this region. Conclusions Biofilm development in MRSA might be an ica dependent and one needs to investigate the involvement of other global regulators, agr and sarA , and their contribution to the biofilm phenotype, as the high rate of biofilm production among the studied strains of S. aureus .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.