A machine learning (ML) method was used to optimize the trap distribution of the charge trap nitride (CTN) to simultaneously improve its performance/reliability (P/R) characteristics, which are tradeoffs in 3-D NAND flash memories. Using an artificial neural network (ANN), we modeled the relationship between trap distributions and P/R characteristics. The ANN was trained using a large experimentallycalibrated technology computer-aided design (TCAD) simulation dataset. The gradient descent method was adapted to optimize the trap distribution, achieving the best P/R characteristics based on the welltrained ANN. Eventually, we found the best trap profile distributed in both space and energy. In particular, the energetic trap distribution had a larger impact on the P/R characteristics than that of the spatial trap distribution. Furthermore, in terms of the P/R characteristics, it was generally preferable to increase all inputs of the energetic trap distribution. However, the acceptor-like trap energy level (E TA ) and its standard deviation (σ EA ) caused a tradeoff between P/R characteristics; therefore, ML was used to determine their optimal points. The proposed ML method allows the optimization of trap distribution to obtain the best P/R characteristics rapidly and quantitatively. Our findings could be used as a guideline for determining the physical properties of CTN in 3-D NAND flash cells.
A machine-learning (ML) technique was used to optimize the energetic-trap distributions of nano-scaled charge trap nitride (CTN) in 3D NAND Flash to widen the threshold voltage (Vth) window, which is crucial for NAND operation. The energetic-trap distribution is a critical material property of the CTN that affects the Vth window between the erase and program Vth. An artificial neural network (ANN) was used to model the relationship between the energetic-trap distributions as an input parameter and the Vth window as an output parameter. A well-trained ANN was used with the gradient-descent method to determine the specific inputs that maximize the outputs. The trap densities (NTD and NTA) and their standard deviations (σTD and σTA) were found to most strongly impact the Vth window. As they increased, the Vth window increased because of the availability of a larger number of trap sites. Finally, when the ML-optimized energetic-trap distributions were simulated, the Vth window increased by 49% compared with the experimental value under the same bias condition. Therefore, the developed ML technique can be applied to optimize cell transistor processes by determining the material properties of the CTN in 3D NAND Flash.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.