A self-sustainable base station (BS) where renewable resources and energy storage system (ESS) are interoperably utilized as power sources is a promising approach to save energy and operational cost in communication networks. However, high battery price and low utilization of ESS intended for uninterruptible power supply (UPS) necessitates active utilization of ESS. This paper proposes a multi-functional framework of ESS using dynamic programming (DP) for realizing a sustainable BS. We develop an optimal charging and discharging scheduling algorithm considering a detailed battery wear-out model to minimize operational cost as well as to prolong battery lifetime. Our approach significantly reduces total cost compared to the conventional method that does not consider battery wear-out. Extensive experiments for several scenarios exhibit that total cost is reduced by up to 70.6% while battery wear-out is also reduced by 53.6%. The virtue of the proposed framework is its wide applicability beyond sustainable BS and thus can be also used for other types of load in principle.
Abstract:In this paper, we propose novel techniques to reduce total cost and peak load of factories from a customer point of view. We control energy storage system (ESS) to minimize the total electricity bill under the Korea commercial and industrial (KCI) tariff, which both considers peak load and time of use (ToU). Under the KCI tariff, the average peak load, which is the maximum among all average power consumptions measured every 15 min for the past 12 months, determines the monthly base cost, and thus peak load control is extremely critical. We aim to leverage ESS for both peak load reduction based on load prediction as well as energy arbitrage exploiting ToU. However, load prediction inevitably has uncertainty, which makes ESS operation challenging with KCI tariff. To tackle it, we apply robust optimization to minimize risk in a real environment. Our approach significantly reduces the peak load by 49.9% and the total cost by 10.8% compared to the case that does not consider load uncertainty. In doing this we also consider battery degradation cost and validate the practical use of the proposed techniques.
Recent advances in battery technologies have reduced the financial burden of using the energy storage system (ESS) for customers. Peak cut, one of the benefits of using ESS, can be achieved through proper charging/discharging scheduling of ESS. However, peak cut is sensitive to load-forecasting error, and even a small forecasting error may result in the failure of peak cut. In this paper, we propose a two-phase approach of day-ahead optimization and real-time control for minimizing the total cost that comes from time-of-use (TOU), peak load, and battery degradation. In day-ahead optimization, we propose to use an internalized pricing to manage peak load in addition to the cost from TOU. The proposed method can be implemented by using dynamic programming, which also has an advantage of accommodating the state-dependent battery degradation cost. Then in real-time control, we propose a concept of marginal power to alleviate the performance loss incurred from load-forecasting error and mimic the offline optimal battery scheduling by learning from load-forecasting error. By exploiting the marginal power, real-time ESS charging/discharging power gets close to the offline optimal battery scheduling. Case studies show that under load-forecasting uncertainty, the peak power using the proposed method is only 22.4% higher than the offline optimal peak power, while the day-ahead optimization has 76.8% higher peak power than the offline optimal power. In terms of profit, the proposed method achieves 77.0% of the offline optimal profit while the day-ahead method only earns 19.6% of the offline optimal profit, which shows the substantial improvement of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.