Silicon has been widely used to fabricate microfluidic devices due to the dominance of silicon microfabrication technologies available. In this paper, theoretical analyses are carried out to suggest suitable laser machining parameters to achieve required channel geometries. Based on the analyses, a low-power CO 2 laser was employed to create microchannels in Acrylic substrate for the use of manufacturing an optical bubble switch. The developed equations are found useful for selecting appropriate machining parameters. The ability to use a low-cost CO 2 laser to fabricate microchannels provides an alternative and cost-effective method for prototyping fluid flow channels, chambers and cavities in microfluidic lab chips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.