Cannabinoid 1 receptor (CB1R) inverse agonists are emerging as a potential obesity therapy. However, the physiological mechanisms by which these agents modulate human energy balance are incompletely elucidated. Here, we describe a comprehensive clinical research study of taranabant, a structurally novel acyclic CB1R inverse agonist. Positron emission tomography imaging using the selective CB1R tracer [(18)F]MK-9470 confirmed central nervous system receptor occupancy levels ( approximately 10%-40%) associated with energy balance/weight-loss effects in animals. In a 12-week weight-loss study, taranabant induced statistically significant weight loss compared to placebo in obese subjects over the entire range of evaluated doses (0.5, 2, 4, and 6 mg once per day) (p < 0.001). Taranabant treatment was associated with dose-related increased incidence of clinical adverse events, including mild to moderate gastrointestinal and psychiatric effects. Mechanism-of-action studies suggest that engagement of the CB1R by taranabant leads to weight loss by reducing food intake and increasing energy expenditure and fat oxidation.
Psychopathological disorders, and depression in particular, are strongly linked to eating attitude in obese patients. The identification of cannabinoid CB1 receptors (CB1Rs) in areas of the central nervous system (CNS) that have been implicated in regulation of mood and food intake suggests that these receptors may mediate such a behavioral link. The goal of this study was to evaluate CB1R modulation of antidepressant-like effects and food intake. For this purpose, 129/SVE and C57BL/6 male mice were acutely dosed intraperitoneally (i.p.) with the CB1R inverse agonist AM251 (3-30 mg/kg) and tested, respectively, in the tail-suspension test (TST) and in the forced-swim test (FST), which have been used widely as tests sensitive to antidepressant compounds. Like the antidepressant desipramine (DMI, 16 mg/kg), AM251 significantly reduced immobility at 10 mg/kg in the TST and at 1 and 10 mg/kg in the FST. Such a decrease of immobility was not accompanied by an increase in motor activity in the open field, suggesting that occupancy of CB1R by AM251 induced antidepressant-like effects. This was supported by two additional experiments. First, the co-administration of the CB1R agonist CP55940, at a dose that did not induce motor impairment or profound hypothermia (0.01 mg/kg), reversed effects of AM251 in the TST. Secondly, effects of AM251 in the FST were absent in CB1R knockout (KO) mice. In addition to an antidepressant-like effect, AM251 reduced fasting-induced hyperphagia over a comparable dose range. Taken together, these data suggest that regulation of mood and food intake might be obtained through inverse agonism of CB1R.
The cannabinoid-1 receptor (CB1R) has been implicated in the control of energy balance. To explore the pharmacological utility of CB1R inhibition for the treatment of obesity, we evaluated the efficacy of N- [(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-{[5-(trifluoromethyl)pyridin-2-yl]oxy}propanamide (MK-0364) and determined the relationship between efficacy and brain CB1R occupancy in rodents. MK-0364 was shown to be a highly potent CB1R inverse agonist that inhibited the binding and functional activity of various agonists with a binding K i of 0.13 nM for the human CB1R in vitro. MK-0364 dose-dependently inhibited food intake and weight gain, with an acute minimum effective dose of 1 mg/kg in diet-induced obese (DIO) rats. CB1R mechanism-based effect was demonstrated for MK-0364 by its lack of efficacy in CB1R-deficient mice. Chronic treatment of DIO rats with MK-0364 dose-dependently led to significant weight loss with a minimum effective dose of 0.3 mg/kg (p.o.), or a plasma C max of 87 nM. Weight loss was accompanied by the loss of fat mass. Partial occupancy (30 -40%) of brain CB1R by MK-0364 was sufficient to reduce body weight. The magnitude of weight loss was correlated with brain CB1R occupancy. The partial receptor occupancy requirement for efficacy was also consistent with the reduced food intake of the heterozygous mice carrying one disrupted allele of CB1R gene compared with the wild-type mice. These studies demonstrated that MK-0364 is a highly potent and selective CB1R inverse agonist and that it is orally active in rodent models of obesity.Cannabinoid-1 receptor (CB1R) is a G protein-coupled receptor predominantly expressed in the nervous system, and it has been identified as the brain receptor for exogenous molecules such as tetrahydrocannabinol (Berry and Mechoulam, 2002;Howlett et al., 2002;Pertwee, 2005;Thakur et al.,
Taranabant is a cannabinoid-1 receptor inverse agonist for the treatment of obesity. This study evaluated the safety, pharmacokinetics, and pharmacodynamics of taranabant (5, 7.5, 10, or 25 mg once daily for 14 days) in 60 healthy male subjects. Taranabant was rapidly absorbed, with a median t(max) of 1.0 to 2.0 hours and a t(1/2) of approximately 74 to 104 hours. Moderate accumulation was observed in C(max) (1.18- to 1.40-fold) and AUC(0-24 h) (1.5- to 1.8-fold) over 14 days for the 5-, 7.5-, and 10-mg doses, with an accumulation half-life ranging from 15 to 21 hours. Steady state was reached after 13 days. After multiple-dose administration, plasma AUC(0-24 h) and C(max) of taranabant increased dose proportionally (5-10 mg) and increased somewhat less than dose proportionally for 25 mg. Taranabant was generally well tolerated up to doses of 10 mg and exhibited multiple-dose pharmacokinetics consistent with once-daily dosing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.