We describe a method to induce hyperthermia in cells, in-vitro, by remotely heating Ni nanowires (NWs) with radio frequency (RF) electromagnetic fields. Ni NWs were internalized by human embryonic kidney cells (HEK-293). Only cells proximal to NWs or with internalized NWs changed shape on exposure to RF fields indicative of cell death. The cell death occurs as a result of hyperthermia, since the RF field remotely heats the NWs as a result of magnetic hysteresis. This is the first demonstration of hyperthermia induced by NWs; since the NWs have anisotropic and strong magnetic moments, our experiments suggest the possibility of performing hyperthermia at lower field strengths in order to minimize damage to untargeted cells in applications such as the treatment of cancer.
Articles you may be interested inTwodimensional bulk bands and surface resonances originated from (100) surfaces of III-V semiconductor compounds AIP Conf.The effects of sulfur passivation on liquid-phase-epitaxy-grown n-type InGaP and AlGaAs surfaces have been studied using x-ray photoelectron spectroscopy. The surfaces were simultaneously prepared through degreasing and the use of an aqueous ͑NH 4 ͒ 2 S x treatment in air. For InGaP, sulfur atoms initially reacted with both surface In and Ga atoms and reacted negligibly with P atoms. The band bending was reduced by 0.7 eV compared to a sputter-cleaned surface. Presumably, sulfur eliminated P-vacancy-related gap states by occupying P sites and forming In-S and Ga-S bonds. By postheat treatment at 180°C, S atoms were not removed from the surface and band bending was reduced further by 0.1 eV. For AlGaAs, S atoms initially reacted with Ga and As, but this treatment could not remove the Al oxide previously formed in the air. Postheat treatment at 180°C simply induced S redistribution from As to Ga and As desorption, which reduced the band bending by 0.3 eV compared to the sputter-cleaned surface-a result similar to that for GaAs.
In this paper, the improved device performance of top-emitting organic light-emitting diodes (TEOLEDs) with a thin multi-metal layer stack of nickel/silver/nickel (Ni/Ag/Ni) and aluminum/silver/aluminum (Al/Ag/Al) that were used as the anode and cathode on a flexible substrate is discussed. In particular, Indium-Tin-Oxide (ITO) as an anode electrode has been used recently even though it has some problems for flexible devices. Therefore we suggested that a thin multi-metal layer electrode as a new anode is fabricated instead of ITO anode. It was verified that the ITO-free TEOLEDs showed an enhanced probability of the recombination of the electrons and holes through an improved electron/hole charge balance. We also analyzed the optical and electrical characteristics using the current density, luminance, luminance efficiency, external quantum efficiency (EQE), CIE x, y coordinates, and EL spectra of flexible TEOLED devices were characterized. ITO-free, flexible, green-emitting OLEDs with a low cost and a simple process were demonstrated.
A series of seven diarylaminofluorene-derived fluorescent molecules demonstrating a blue emission in organic light-emitting diodes (OLEDs) were synthesized via the Horner-Wadsworth-Emmons reaction and the Suzuki-cross coupling reaction. Among the molecules, one device exhibited blue emission with a maximum luminance of 28900 cd/m 2 at 12 V. A luminous efficiency of 11.5 cd/A at 20 mA/cm 2 was achieved. The peak wavelength of the electroluminescence (EL) was 459.5 nm with the CIE coordinates of (x = 0 173, y = 0 281) at 8 V. The device also showed a stable color chromaticity at various voltages.
White organic light-emitting diodes (WOLEDs) have drawn increasing attention due to their potential use in various applications such as solid-state lighting and backlight of liquid crystal displays and full-color OLEDs of red, green, and blue pixel. N,N'-dicabazolyl-3,5-benzene (mCP), the host material, was co-doped with Iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C2']-picolinate (FIrpic), which functions not only as phosphorescent sensitizer but also blue emitter, and (2Z,2'Z)-3,3'-[4,4"-bis (dimethylamino)-1,1':4',1"-terphenyl-2',5'-diyl]bis (2-phenylacrylonitrile) (ABCV-P), which is a red fluorescent material. The fabricated device structures were as follows: (device A) Indium tin oxide (ITO)/N,N'-bis-(1-naphyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/(mCP)/mCP:ABCV-P (1%)/4,7-diphenyl-1,10-phenanthroline (Bphen)/lithium quinolate (Liq)/aluminum (Al), (device B) ITO/NPB/mCP/mCP:FIrpic (8%)/Bphen/Liq/Al and (device C) ITO/NPB/mCP/mCP:FIrpic:ABCV-P (8%, 1%)/Bphen/Liq/Al, respectively. Phosphorescent FIrpic harvesting both singlet and triplet excitions not only emitted blue light but also transferred energy to fluorescent ABCV-P. The maximum luminance efficiency, external quantum efficiency, and luminance of white light device were measured to be 5.95 cd/A, 2.45% and 2500 cd/m2, respectively. The white device gave practically white light with the Commision Internationale de l'Eclairage (CIE(xy)) coordinate of (0.44, 0.49) which was close to warm white color (CIE(xy) = 0.45, 0.45).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.