Elevated levels of (239,240)Pu and 241Am have been present in surficial soils of the Rocky Flats Environmental Technology Site (RFETS), CO, since the 1960s, when soils were locally contaminated in the 1960s by leaking drums stored on the 903 Pad. Further dispersion of contaminated soil particles was by wind and water. From 1998 until 2001, we examined actinide ((239,240)Pu and 241Am) concentrations and phase speciation in the surface environment at RFETS through field studies and laboratory experiments. Measurements of total (239,240)Pu and 241Am concentrations in storm runoff and pond discharge samples, collected during spring and summer times in 1998-2000, demonstrate that most of the (239,240)Pu and 241Am transported from contaminated soils to streams occurred in the particulate (> or = 0.45 microm; 40-90%) and colloidal (approximately 2 nm or 3 kDa to 0.45 microm; 10-60%) phases. Controlled laboratory investigations of soil resuspension, which simulated storm and erosion events, confirmed that most of the Pu in the 0.45 microm filter-passing phase was in the colloidal phase (> or = 80%) and that remobilization of colloid-bound Pu during soil erosion events can be greatly enhanced by humic and fulvic acids present in these soils. Most importantly, isoelectric focusing experiments of radiolabeled colloidal matter extracted from RFETS soils revealed that colloidal Pu is in the four-valent state and is mostly associated with a negatively charged organic macromolecule with a pH(IEP) of 3.1 and a molecular weight of 10-15 kDa, rather than with the more abundant inorganic (iron oxide and clay) colloids. This finding has important ramifications for possible remediation, erosion controls, and land-management strategies.
In order to investigate the distributions and speciation of (129)I (and (127)I) in a contaminated F-Area groundwater plume of the Savannah River Site that cannot be explained by simple transport models, soil resuspension experiments simulating surface runoff or stormflow and erosion events were conducted. Results showed that 72-77% of the newly introduced I(-) or IO(3)(-) were irreversibly sequestered into the organic-rich riparian soil, while the rest was transformed by the soil into colloidal and truly dissolved organo-iodine, resulting in (129)I remobilization from the soil greatly exceeding the 1 pCi/L drinking water permit. This contradicts the conventional view that only considers I(-) or IO(3)(-) as the mobile forms. Laboratory iodination experiments indicate that iodine likely covalently binds to aromatic structures of the soil organic matter (SOM). Under very acidic conditions, abiotic iodination of SOM was predominant, whereas under less acidic conditions (pH ≥5), microbial enzymatically assisted iodination of SOM was predominant. The organic-rich soil in the vadose zone of F-Area thus acts primarily as a "sink," but may also behave as a potentially important vector for mobile radioiodine in an on-off carrying mechanism. Generally the riparian zone provides as a natural attenuation zone that greatly reduces radioiodine release.
In aquatic environments, iodine mainly exists as iodide, iodate, and organic iodine. The high mobility of iodine in aquatic systems has led to (129)I contamination problems at sites where nuclear fuel has been reprocessed, such as the F-area of Savannah River Site. In order to assess the distribution of (129)I and stable (127)I in environmental systems, a sensitive and rapid method was developed which enables determination of isotopic ratios of speciated iodine. Iodide concentrations were quantified using gas chromatography-mass spectrometry (GC-MS) after derivatization to 4-iodo-N,N-dimethylaniline. Iodate concentrations were quantified by measuring the difference of iodide concentrations in the solution before and after reduction by Na(2)S(2)O(5). Total iodine, including inorganic and organic iodine, was determined after conversion to iodate by combustion at 900 °C. Organo-iodine was calculated as the difference between the total iodine and total inorganic iodine (iodide and iodate). The detection limits of iodide-127 and iodate-127 were 0.34 nM and 1.11 nM, respectively, whereas the detection limits for both iodide-129 and iodate-129 was 0.08 nM (i.e., 2pCi (129)I/L). This method was successfully applied to water samples from the contaminated Savannah River Site, South Carolina, and more pristine Galveston Bay, Texas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.