Many generalist species consist of specialised individuals that use different resources. This withinpopulation niche variation can stabilise population and community dynamics. Consequently, ecologists wish to identify environmental settings that promote such variation. Theory predicts that environments with greater resource diversity favour ecological diversity among consumers (via disruptive selection or plasticity). Alternatively, niche variation might be a side-effect of neutral genomic diversity in larger populations. We tested these alternatives in a metapopulation of threespine stickleback. Stickleback consume benthic and limnetic invertebrates, focusing on the former in small lakes, the latter in large lakes. Intermediate-sized lakes support generalist stickleback populations using an even mixture of the two prey types, and exhibit greater amongindividual variation in diet and morphology. In contrast, genomic diversity increases with lake size. Thus, phenotypic diversity and neutral genetic polymorphism are decoupled: trophic diversity being greatest in intermediate-sized lakes with high resource diversity, whereas neutral genetic diversity is greatest in the largest lakes.
It is critical to understand the specific drivers of biodiversity across multiple spatial scales, especially within rapidly urbanizing areas, given the distinct management recommendations that may result at each scale. However, drivers of biodiversity patterns and interactions between drivers are often only measured and modeled at a single scale. In this study, we assessed bee community composition at three time periods in 20 grassland and 20 agriculture sites located across two major metroplexes. We examined how local environmental variables and surrounding landscape composition impact bee abundance, richness, and evenness, including comparisons between groups with different nesting strategies and body sizes. We collected nearly 13,000 specimens and identified 172 species. We found that levels of regional land use differentially impacted bee abundance and diversity depending on local habitat management. Specifically, within agriculture sites, bee richness was greater with increasing landscape‐level seminatural habitat, while in grassland sites, bee richness was similar across landscapes regardless of seminatural habitat cover. Bee evenness at both site types declined with increasing landscape‐level habitat heterogeneity, due to an increase of rare species at the grassland sites, but not in the agricultural sites, further indicating that diversity is driven by the interaction of local habitat quality and landscape‐level habitat composition. We additionally found that agriculture sites supported higher abundances, but not richness, of small‐bodied and below‐ground nesting bees, while grassland sites supported higher abundances of aboveground nesting bees, and higher richness of large‐bodied species. Increased levels of local bare ground were significantly related to multiple metrics of bee diversity, including greater belowground nesting bee abundance and richness. Local floral richness was also significantly related to increases of overall bee abundance, as well as the abundance and richness of small bees. Overall, we suggest that local land managers can support bee abundance and diversity by conserving areas of bare soil and promoting native floral diversity, the latter especially critical in highly urban agricultural spaces. Our results provide the first documentation of significant interactions between local habitat management and landscape composition impacting insect communities in urban systems, indicating that bee conservation practices depend critically on land use interactions across multiple spatial scales.
Many metacommunities are distributed across habitat patches that are themselves aggregated into groups. Perhaps the clearest example of this nested metacommunity structure comes from multi‐species parasite assemblages, which occupy individual hosts that are aggregated into host populations. At both spatial scales, we expect parasite community diversity in a given patch (either individual host or population) to depend on patch characteristics that affect colonization rates and species sorting. But, are these patch effects consistent across spatial scales? Or, do different processes govern the distribution of parasite community diversity among individual hosts, versus among host patches? To answer these questions, we document the distribution of parasite richness among host individuals and among populations in a metapopulation of threespine stickleback Gasterosteus aculeatus. We find some host traits (host size, gape width) are associated with increased parasite richness at both spatial scales. Other patch characteristics affect parasite richness only among individuals (sex), or among populations (lake size, lake area, elevation and population mean heterozygosity). These results demonstrate that some rules governing parasite richness in this metacommunity are shared across scales, while others are scale‐specific.
Climate change is leading to habitat shifts that threaten species persistence throughout California's unique ecosystems. Baseline biodiversity data would provide opportunities for habitats to be managed under short-term and long-term environmental change. Aiming to provide biodiversity data, the UC Conservation Genomics Consortium launched the California Environmental DNA (CALeDNA) program to be a citizen and community science biomonitoring initiative that uses environmental DNA (eDNA, DNA shed from organisms such as from fur, feces, spores, pollen or leaves). Now with results from 1,000 samples shared online, California biodiversity patterns are discoverable. Soil, sediment and water collected by researchers, undergraduates and the public reveal a new catalog of thousands of organisms that only slightly overlap with traditional survey bioinventories. The CALeDNA website lets users explore the taxonomic diversity in different ways, and researchers have created tools to help people new to eDNA to analyze community ecology patterns. Although eDNA results are not always precise, the program team is making progress to fit it into California's biodiversity management toolbox, such as for monitoring ecosystem recovery after invasive species removal or wildfire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.