Alendronate derivatives were evaluated as potential prodrugs for the osteoporosis drug alendronate sodium in an attempt to enhance the systemic exposure after oral administration. An investigation of the chemical behavior of alendronate derivatives led to development of practical synthetic strategies and prediction of each structural class's prodrug potential. Pharmacokinetic studies of N-myristoylalendronic acid revealed that 25% have been converted in vivo after i.v. administration in rat, providing an important proof-of-concept for this strategy.
Given the complexity of controlled release (CR) formulations, selecting the right preclinical tools is important to enable decision making on the in vivo performance of these formulations during development. In recent years, with the advancements of absorption/physiologically based pharmacokinetic (PBPK) modeling, such computational approaches play an increasing role in guiding formulation development. Development of PBPK models for CR formulations requires additional information compared with immediate release (IR) products. Perhaps the most important aspect is the need to simulate absorption in the lower intestine. Relatively few publications have investigated the use of PBPK models for compounds with region-dependent absorption. In this manuscript, we use gaboxadol as a model compound with region-dependent absorption. We first explored gaboxadol regional absorption in dogs to develop a PBPK model for absorption in the large intestine. Two matrix-based CR formulations were subsequently developed and tested in minipigs and demonstrated distinctly different pharmacokinetic profiles from the IR formulation. A minipig absorption PBPK model successfully predicted the observed plasma concentration data, with the predictions based on the in vitro dissolution being within the observed experimental variability. Finally, we demonstrate the development of an in vitro-in vivo correlation for the preclinical data using the same PBPK model.
Developing new antiretroviral therapies for HIV-1 infection with potential for less frequent dosing represents an important goal within drug discovery. Herein, we present the discovery of ethyl (1-((4-((4-fluorobenzyl)carbamoyl)-1-methyl-2-(2-(5-methyl- 1,3,4-oxadiazole-2-carboxamido)propan-2-yl)-6-oxo-1,6-dihydropyrimidin-5-yl)oxy)ethyl) carbonate (MK-8970), a highly optimized prodrug of raltegravir (Isentress). Raltegravir is a small molecule HIV integrase strand-transfer inhibitor approved for the treatment of HIV infection with twice-daily administration. Two classes of prodrugs were designed to have enhanced colonic absorption, and derivatives were evaluated in pharmacokinetic studies, both in vitro and in vivo in different species, ultimately leading to the identification of MK-8970 as a suitable candidate for development as an HIV therapeutic with the potential to require less frequent administration while maintaining the favorable efficacy, tolerability, and minimal drug-drug interaction profile of raltegravir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.