The response surface method was used to study the ultrasonic extraction of traditional Chinese medicine Desmodium triquetrum (L.) DC. phenolic acid. By measuring the total phenolic content, the liquid/solid ratio, ultrasonic power, temperature, time and ethanol solubility were determined to be the significant influencing factors. The total phenolic content reached the highest value (30.3708 mg g–1) under the conditions of the liquid/solid ratio 30%, ultrasonic power 160 w, temperature 40 °C, time 20 min, and ethanol solubility 60%, compared with the traditional boiling method. The total phenolic content was improved, and it was close to the predicted value (29.6548 mg g–1), which proves that the scheme is feasible. After testing, the phenolic acid extracted under these conditions has a good antioxidation effect. The study suggests that ultrasonic extraction methods have the potential to extract antioxidants from traditional Chinese medicines. Also, the influence parameters affecting the process can be further optimized for industrial production.<br /><br />
The soil-borne fungus Fusarium oxysporum (Fo) and the nematode Meloidogyne incognita (Mi) are destructive pathogens that cause substantial yield losses to tomato (Solanum lycopersicum L.) crops worldwide. The present study sought to elucidate the physiological, biochemical, and cytological responses of tomato cultivars (Gailing maofen 802 and Zhongza 09) by root invasion of Fo (1 × 105 CFUmL−1) and Mi (1500 second-stage juveniles (J2) alone and in combination after 14 days. Results revealed that combined inoculation of Fo and Mi significantly increased disease intensity, electrolyte leakage, and hydrogen peroxide and malondialdehyde contents; and decreased photosynthetic capacity and enzyme activity in both cultivars as compared to their solo inoculation. Increasing the disease intensity reduced the maximum morphological traits, such as shoot length, total dry weight, and total chlorophyll contents, in G. maofen 802 (by 32%, 54.2%, and 52.3%, respectively) and Zhongza 09 (by 18%, 32%, and 21%, respectively) as compared to the control. Others factors were also reduced in G. maofen 802 and Zhongza 09, such as photosynthetic capacity (by 70% and 57%, respectively), stomatal conductance (by 86% and 70%, respectively), photochemical quantum yield of photosystem II (YII) (by 36.6% and 29%, respectively), and electron transport rate (by 17.7% and 10%, respectively), after combined inoculation of Fo and Mi. Furthermore, the combined infestation of Fo and Mi resulted in reduced activity of plant-defense-related antioxidants in G. maofen 802 compared with their single application or control. However, these antioxidants were highly up-regulated in Zhongza 09 (by 59%–93%), revealing the induction of tolerance against studied pathogens. The transmission electron microscopy (TEM) results further demonstrated that root cells of Zhongza 09 had unique tetrahedral crystal-like structures in the membrane close to mitochondria under all treatments except control. Therefore, it is concluded that Mi caused severe root damage, suppressed plant growth, depleted antioxidants, and caused high generation of ROS in the presence of Fo as compared to its solo inoculation. Tolerant cultivars adopted different mechanistic strategies at the structural and cellular levels to tolerate the Mi and Fo stresses.
Semiaquilegia adoxoides (DC.) Makino is a herbal medicine and it is recorded that its water extract can be used to treat acute diseases caused by bacterial infections. In order to understand the polysaccharide of Semiaquilegia adoxoides (DC.) Makino (SMP), FT-IR and HPLC methods were performed to determine the basic chemical structure and monosaccharide compositions of SMP. The antioxidant capacity of SMP was analyzed by monitoring both the scavenging rate of DPPH and ABTS free radical. To investigate the effects of SMP on the acute bacterial disease, minimum inhibitory concentrations (MICs) of SMP on E. coli or S. aureus were detected; meanwhile, mice were administrated with SMP for 7 days and then infected with E. coli or S. aureus, and the parameters were measured at the 9th day. Results showed that SMP was a furanose which was mainly composed of glucose (60.3%) and had certain antioxidant activities. Both MIC values of SMP on E. coli and S. aureus were 250 ml/mL, which means that SMP has no direct antibacterial effects. The mice experiments revealed that SMP had potential effects on immunomodulatory by reducing WBC and the expression of serum IL-1, IL-6, and TNF-α and increasing IgM of E. coli or S. aureus infected mice. These findings supported the effect of Semiaquilegia adoxoides (DC.) Makino in folk use with scientific evidence.
Cloud computing plays a vital role in healthcare as it can store a large amount of data known as big data. In the current emerging era of computing technology, big data analysis and prediction is a challenging task in the healthcare industry. Healthcare data are very crucial for the patient as well as for the respective healthcare services provider. Several healthcare industries adopted cloud computing for data storage and analysis. Incredible progress has been achieved in making combined health records available to data scientists and clinicians for healthcare research. However, big data in health cloud informatics demand more robust and scalable solutions to accurately analyze it. The increasing number of patients is putting high pressure on healthcare services worldwide. At this stage, fast, accurate, and early clinical assessment of the disease severity is vital. Predicting mortality among patients with a variety of symptoms and complications is difficult, resulting inaccurate and slow prediction of the disease. This article presents a deep learning based model for the prediction of patient mortality using the Medical Information Mart for Intensive Care III (MIMIC-III) dataset. Different parameters are used to analyze the proposed model, i.e., accuracy, F1 score, recall, precision, and execution time. The results obtained are compared with state-of-the-art models to test and validate the proposed model. Moreover, this research suggests a simple and operable decision rule to quickly predict patients at the highest risk, allowing them to be prioritized and potentially reducing the mortality rate.
Critical Discourse Analysis views language in use as a kind of social practice, it is often applied to political language (discourse— text, talk, and/or visual), including public speeches. This paper critically analyzes the speech by the Prime Minister of Pakistan, delivered at the United Nations General Assembly (UNGA) on September 28, 2019. The study uses Fairclough's Three-Dimensional Model, to reflect upon "Us" and "Them" in the context of four major themes of the speech: climate change, money laundering, Islamophobia, and Kashmir. The study uses a mixed-method approach for a thorough review of the speech and discusses power within the discourse and power behind discourse. The findings reveal how language reflects the ideology of the political leaders, and how discourse can form and be formed by social practices. The Prime Minister used language effectively to present the ideological dichotomies between "Us" and "Them" in the context of developing countries-developed countries (powerful politically and economically), Muslims - anti-Muslims, and Pakistan/Kashmir - India. He urged the world-leaders at UNGA's highest political forum, after drawing the line of demarcation, to take steps to resolve the differences to achieve harmony and peace in the world. This research enables the common public of Pakistan to understand their leader in terms of the concept of power by comprehending the profounder meaning that language conveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.