Innovative multi-material lightweight construction enables reducing dead weight while maintaining and preferably boosting the components' performance. The implementation of multi-material parts (e.g., plastic-metal-components) requires reliable joining processes since a direct connection between these materials is not feasible due to their different physical and chemical properties. In order to avoid additional weight through adhesive bonding, riveting or fasteners, thermal direct joining with a modified metal surface is a promising approach. Within a first process step, the metal surface is modified by laser-microstructuring. To enlarge the boundary surface and create undercut structures, random self-organizing micro- and nanostructures are generated with ultrashort pulsed laser radiation on stainless steel samples. In the subsequent direct thermal joining process, both joining partners are clamped together. The metal is heated up with diode laser radiation, and through heat conduction, the polymer melts and flows into the generated cavities. After cooling-down, a firm joint between both materials is created, which is based on mechanical interlocking and increased specific adhesion between the joining partners. The mechanical strength of the joint depends strongly on the load direction. In the presented contribution, the strength of the joint between stainless steel and glass-fiber-reinforced and non-reinforced thermoplastics (PP) is investigated for three different load directions (tensile shear, tensile and peel).
In this work, results obtained from roughness characterization ofmicro-textured USIBOR steel samples are shown. Laser texturing is used for creating specific periodic microstructures with positive topographies by molten metal displacement technique. Three different methods based on speckle technique (contrast intensity, binary image analysis, spot size measurement) are testedfor a contactless inspection and determination of surface roughness. Characterization and calibration relationship are based on the correlation between measured roughness (with conventional methods) and results from speckle techniques
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.