Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract This paper presents a profit-oriented shift scheduling approach for inbound contact centers. The focus is on systems in which multiple agent classes with different qualifications serve multiple customer classes with different needs. We assume that customers are impatient, abandon if they have to wait, and that they may retry. A discrete-time modeling approach is used to capture the dynamics of the system due to time-dependent arrival rates. Staffing levels and shift schedules are simultaneously optimized over a set of different approximate realizations of the underlying stochastic processes to consider the randomness of the system. The numerical results indicate that the presented approach works best for medium-sized and large contact centers with skills-based routing of customers for which stochastic queueing models are rarely applicable. Terms of use: Documents in EconStor may
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.