Author contributions M.K. co-designed and implemented the overall strategy for the creation of the knock-in fly lines, designed and implemented the bioassays, the RT-qPCR experiments and the RMO analysis, performed statistical analyses and co-wrote the manuscript. S.C.G. designed and implemented the overall strategy for the creation of the knock-in fly lines, prepared the sequence data and metadata for the phylogenetic analyses, co-designed all other experiments, and co-wrote the manuscript. F.S. performed the structural modelling and docking site analyses. J.N.P. performed the phylogenetic, ancestral state and co-evolutionary analyses. K.I.V. conducted crosses, genotyping, and feeding experiments, and co-designed the qPCR experiments. J.M.A. and S.L.B. conducted crosses and genotyping, and feeding and sequestration experiments. A.P.H. performed the in vitro physiological experiments and sequestration analyses. T.M. conducted feeding experiments M.A. performed the RMO analysis with M.K., and conducted genotyping and feeding experiments. G.G. completed the RMO and ouabain dietary survival analyses. F.R. supervised the structural modelling and docking site analyses. S.D. oversaw and interpreted in vitro cell line analyses, helped to design the overall project and co-wrote the manuscript. A.A.A. helped to design the overall project, oversaw the in vitro physiological and sequestration experiments, and co-wrote the manuscript. N.K.W. led the overall collaboration, the project design and its integration, creation of fly lines and statistical analyses, and co-wrote the manuscript. Peer review information Nature thanks Joseph W. Thornton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.Online content Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at
Horizontal gene transfer events have played a major role in the evolution of microbial species, but their importance in animals is less clear. Here, we report horizontal gene transfer of cytolethal distending toxin B (cdtB), prokaryotic genes encoding eukaryote-targeting DNase I toxins, into the genomes of vinegar flies (Diptera: Drosophilidae) and aphids (Hemiptera: Aphididae). We found insect-encoded cdtB genes are most closely related to orthologs from bacteriophage that infect Candidatus Hamiltonella defensa, a bacterial mutualistic symbiont of aphids that confers resistance to parasitoid wasps. In drosophilids, cdtB orthologs are highly expressed during the parasitoid-prone larval stage and encode a protein with ancestral DNase activity. We show that cdtB has been domesticated by diverse insects and hypothesize that it functions in defense against their natural enemies.
SIGNIFICANCE STATEMENTThe origin of land plants >400 million years ago (mya) spurred the diversification of plant-feeding (herbivorous) insects and triggered an ongoing chemical co-evolutionary arms race. Because ancestors of most herbivorous insects first colonized plants >200 mya, the sands of time have buried evidence of how their genomes changed with their diet. We leveraged the serendipitous intersection of two genetic model systems: a close relative of yeast-feeding fruit fly ( Drosophila melanogaste r), the "wasabi fly" ( Scaptomyza flava ), that evolved to consume mustard plants including Arabidopsis thaliana . The yeast-to-mustard dietary transition remodeled the fly's gene repertoire for sensing and detoxifying chemicals. Although many genes were lost, some underwent duplications that encode the most efficient detoxifying enzymes against mustard oils known from animals. Gloss et al. 2019 1ABSTRACT One-quarter of extant Eukaryotic species are herbivorous insects, yet the genomic basis of this extraordinary adaptive radiation is unclear. Recently-derived herbivorous species hold promise for understanding how colonization of living plant tissues shaped the evolution of herbivore genomes. Here, we characterized exceptional patterns of evolution coupled with a recent (<15 mya) transition to herbivory of mustard plants (Brassicaceae, including Arabidopsis thaliana ) in the fly genus Scaptomyza, nested within the paraphyletic genus Drosophila . We discovered a radiation of mustard-specialized Scaptomyza species, comparable in diversity to the Drosophila melanogaster species subgroup. Stable isotope, behavioral, and viability assays revealed these flies are obligate herbivores. Genome sequencing of one species, S. flava, revealed that the evolution of herbivory drove a contraction in gene families involved in chemosensation and xenobiotic metabolism. Against this backdrop of losses, highly targeted gains ("blooms") were found in Phase I and Phase II detoxification gene sub-families, including glutathione S-transferase ( Gst ) and cytochrome P450 ( Cyp450 ) genes. S. flava has more validated paralogs of a single Cyp450 (N=6 for Cyp6g1 ) and Gst (N=5 for GstE5-8 ) than any other drosophilid. Functional studies of the Gst repertoire in S. flava showed that transcription of S. flava GstE5-8 paralogs was differentially regulated by dietary mustard oils, and of 22 heterologously expressed cytosolic S. flava GST enzymes, GSTE5-8 enzymes were exceptionally well-adapted to mustard oil detoxification in vitro . One, GSTE5-8a, was an order of magnitude more efficient at metabolizing mustard oils than GSTs from any other metazoan. The serendipitous intersection of two genetic model organisms, Drosophila and Arabidopsis , helped illuminate how an insect genome was remodeled during the evolutionary transformation to herbivory, identifying mechanisms that facilitated the evolution of the most diverse guild of animal life.
The diversity of herbivorous insects is attributed to their propensity to specialize on toxic plants. In an evolutionary twist, toxins betray the identity of their bearers when herbivores co-opt them as cues for host-plant finding, but the evolutionary mechanisms underlying this phenomenon are poorly understood. We focused on Scaptomyza flava, an herbivorous drosophilid specialized on isothiocyanate (ITC)-producing (Brassicacales) plants, and identified Or67b paralogs that were triplicated as mustard-specific herbivory evolved. Using in vivo heterologous systems for the expression of olfactory receptors, we found that S. flava Or67bs, but not the homologs from microbe-feeding relatives, responded selectively to ITCs, each paralog detected different ITC subsets. Consistent with this, S. flava was attracted to ITCs, as was Drosophila melanogaster expressing S. flava Or67b3 in the homologous Or67b olfactory circuit. ITCs were likely co-opted as olfactory attractants through gene duplication and functional specialization (neofunctionalization and subfunctionalization) in S. flava, a recently-derived herbivore.
Herbivorous insects are extraordinarily diverse, yet are found in only one-third of insect orders. This skew may result from barriers to plant colonization, coupled with phylogenetic constraint on plant-colonizing adaptations. The plant-penetrating ovipositor, however, is one trait that surmounts host plant physical defences and may be evolutionarily labile. Ovipositors densely lined with hard bristles have evolved repeatedly in herbivorous lineages, including within the Drosophilidae. However, the evolution and genetic basis of this innovation has not been well studied. Here, we focused on the evolution of this trait in Scaptomyza , a genus sister to Hawaiian Drosophila , that contains a herbivorous clade. Our phylogenetic approach revealed that ovipositor bristle number increased as herbivory evolved in the Scaptomyza lineage. Through a genome-wide association study, we then dissected the genomic architecture of variation in ovipositor bristle number within S. flava . Top-associated variants were enriched for transcriptional repressors, and the strongest associations included genes contributing to peripheral nervous system development. Individual genotyping supported the association at a variant upstream of Gαi , a neural development gene, contributing to a gain of 0.58 bristles/major allele. These results suggest that regulatory variation involving conserved developmental genes contributes to this key morphological trait involved in plant colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.