Covariance and correlation estimates have important applications in data mining. In the presence of outliers, classical estimates of covariance and correlation matrices are not reliable. A small fraction of outliers, in some cases even a single outlier, can distort the classical covariance and correlation estimates making them virtually useless. That is, correlations for the vast majority of the data can be very erroneously reported; principal components transformations can be misleading; and multidimensional outlier detection via Mahalanobis distances can fail to detect outliers. There is plenty of statistical literature on robust covariance and correlation matrix estimates with an emphasis on affineequivariant estimators that possess high breakdown points and small worst case biases. All such estimators have unacceptable exponential complexity in the number of variables and quadratic complexity in the number of observations. In this paper we focus on several variants of robust covariance and correlation matrix estimates with quadratic complexity in the number of variables and linear complexity in the number of observations. These estimators are based on several forms of pairwise robust covariance and correlation estimates. The estimators studied include two fast estimators based on coordinate-wise robust transformations embedded in an overall procedure recently proposed by [14]. We show that the estimators have attractive robustness properties, and give an example that uses one of the estimators in the new Insightful Miner data mining product.
Single-particle electron microscopy is a modern technique that biophysicists
employ to learn the structure of proteins. It yields data that consist of noisy
random projections of the protein structure in random directions, with the
added complication that the projection angles cannot be observed. In order to
reconstruct a three-dimensional model, the projection directions need to be
estimated by use of an ad-hoc starting estimate of the unknown particle. In
this paper we propose a methodology that does not rely on knowledge of the
projection angles, to construct an objective data-dependent low-resolution
approximation of the unknown structure that can serve as such a starting
estimate. The approach assumes that the protein admits a suitable sparse
representation, and employs discrete $L^1$-regularization (LASSO) as well as
notions from shape theory to tackle the peculiar challenges involved in the
associated inverse problem. We illustrate the approach by application to the
reconstruction of an E. coli protein component called the Klenow fragment.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS479 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.