We have reported that collagen synthesis was stimulated by the administration of a hot water extract from the leaves of Eucommia ulmoides OLIVER, Eucommiaceae (Du-Zhong leaves) in false aged model rats. In this paper, we set out to examine the compounds in Du-Zhong leaves that stimulated collagen synthesis in false aged model rats. In experiment 1, a methanol extract of Du-Zhong leaves also stimulated collagen synthesis in aged model rats. An acetone fraction was derived from the methanol extract by silica gel chromatography in experiment 2. The acetone fraction mainly contained iridoides mono-glycosides such as geniposidic acid and aucubin. The administration of geniposidic acid or aucubin stimulated collagen synthesis in aged model rats in experiments 3 and 4 (significance (p<0.05)). The reported pharmacological effects of Du-Zhong leaves, including healing organs and strengthening bone and muscle, are closely related to collagen metabolism. It appears that geniposidic acid and aucubin are the actual compounds in Du-Zhong which caused the effect in our experiments.
Berberine-type alkaloids and some structurally related alkaloids were tested for inhibitory activity on porcine pancreatic elastase (PPE) and human sputum elastase (HSE). The chlorides of berberine, coptisine, and sanguinarine significantly inhibited the elastolytic activity of both the enzymes, but tetrahydroberberine had no effect on the activity. It seems that the quaternary nitrogen of the alkaloids plays an important role in the inhibition of elastolytic activity. Amidolytic activity of the elastases was not affected by any of the alkaloids tested.
Indirubin is a potent inhibitor of cell cycle-related protein kinases by binding to the ATP-binding site and thus is a promising compound for development as an antitumor drug. We prepared indirubin 3'-(O-oxiran-2-ylmethyl)oxime (Epox/Ind), in which the ATP-binding site orientated part was attached by non-specific alkylating group. The IC50 value of Epox/Ind at 1.7 μM in HepG2 cells is comparable to that of cisplatin (4.0 μM). Furthermore, Epox/Ind was shown to be metabolized by a HepG2 cell lysate into indirubin 3'-(O-2,3-dihydroxypropyl)oxime (E804), the sole extractable metabolite. The lower toxicity of this metabolite may explain the lack of cytotoxicity of 1 μM Epox/Ind observed in HepG2 cells beyond an initial loss of viability in the first 24h of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.