Insect wing is a key evolutionary innovation for insect radiation, but its origins and intermediate forms are absent from the fossil record. To understand the ancestral state of the wing, expression of three key regulatory genes in insect wing development, wingless (wg), vestigial (vg), and apterous (ap) was studied in two basal insects, mayfly and bristletail. These basal insects develop dorsal limb branches, tracheal gill and stylus, respectively, that have been considered candidates for wing origin. Here we show that wg and vg are expressed in primordia for tracheal gill and stylus. Those primordia are all located in the lateral body region marked by down-regulation of early segmental wg stripes, but differ in their dorsal-ventral position, indicating their positions drifted within the lateral body region. On the other hand, ap expression was detected in terga of mayfly and bristletail. Notably, the extensive outgrowth of the paranotal lobe of apterygote bristletail developed from the border of ap-expressing tergal margin, and also expressed wg and vg. The data suggest that two regulatory modules involving wg-vg are present in apterygote insects: one associated with lateral body region and induces stick-like dorsal limb branches, the other associated with the boundary of dorsal and lateral body regions and the flat outgrowth of their interface. A combinatorial model is proposed in which dorsal limb branch was incorporated into dorsal-lateral boundary and acquired flat limb morphology through integration of the two wg-vg modules, allowing rapid evolution of the wing.
Japan is considered a global hot spot of biodiversity. With regard to species diversity, insects are no exception. To date, more than 32,000 insect species have been identified in Japan, while around 100,000 species of insects are estimated to inhabit this country. In this paper, we outline background factors having contributed to diversification of Japanese insects. Of course, the high degree of Japanese insect diversity is the result of many complex factors. In addition to the humid Asian monsoon climate and the extensive latitudinal gradient of habitats, the extremely complex geological history has contributed as an important factor to generate and maintain the high species diversity and endemism. In particular, the independent origins of northeastern and southwestern Japan from the Eurasian continent have greatly contributed to the diverse composition of Japanese insect fauna. To highlight the importance of this process, we introduce some case studies and previously published papers focusing on several insect groups with low dispersal ability. Those cases indicate that the geological history of Japan has played an important role in the differentiation of Japanese insect species. Besides such geological factors, climatic and ecological factors in combination have contributed to the formation of Japanese insect fauna in complicated ways and produced its particularly high degree of biodiversity. The knowledge compiled here will provide useful information for future studies aiming to understand more deeply the processes of speciation and faunal formation of Japanese insects.
Diflunisal was tolerated well by most hereditary ATTR amyloidosis patients, although renal function and blood cell counts must be carefully monitored. Clinical effects of diflunisal were sustained after 2 years of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.