Objectives. To evaluate universal access to clean drinking water by characterizing relationships between community sociodemographics and water contaminants in California domestic well areas (DWAs) and community water systems (CWSs). Methods. We integrated domestic well locations, CWS service boundaries, residential parcels, building footprints, and 2013–2017 American Community Survey data to estimate sociodemographic characteristics for DWAs and CWSs statewide. We derived mean drinking and groundwater contaminant concentrations of arsenic, nitrate, and hexavalent chromium (Cr[VI]) between 2011 and 2019 and used multivariate models to estimate relationships between sociodemographic variables and contaminant concentrations. Results. We estimated that more than 1.3 million Californians (3.4%) use domestic wells and more than 370 000 Californians rely on drinking water with average contaminant concentrations at or above regulatory standards for 1 or more of the contaminants considered. Higher proportions of people of color were associated with greater drinking water contamination. Conclusions. Poor water quality disproportionately impacts communities of color in California, with the highest estimated arsenic, nitrate, and Cr(VI) concentrations in areas of domestic well use. Domestic well communities must be included in efforts to achieve California’s Human Right to Water. (Am J Public Health. 2022;112(1):88–97. https://doi.org/10.2105/AJPH.2021.306561 )
CalEnviroScreen data combined with birth records offer great opportunity for revealing novel exposures and evaluating cumulative exposures related to PTB by providing useful environmental and social information. Certain drinking water contaminants such as arsenic and nitrate are potentially associated with PTB in California and should be investigated further. Small association signals may involve sizeable population impacts.
BackgroundEpidemiological studies have found that particulate matter is associated with increases in blood pressure. Yet, less is known about the effects of specific sources or constituents of particulate matter, such as diesel particulate matter or polycyclic aromatic hydrocarbons (PAHs). We evaluated associations between self-reported hypertension and residential air levels of diesel particulate matter and PAHs among individuals of Mexican origin living in a large inner city.MethodsThe Mano a Mano cohort (established in 2001 by the University of Texas MD Anderson Cancer Center) is comprised of individuals of Mexican origin residing in Houston, Texas. Using geographical information systems, we linked modeled annual estimates of PAHs and diesel particulate matter at the census tract level from the 2002 and 2005 U.S. Environmental Protection Agency’s National-Scale Air Toxics Assessment to baseline residential addresses of cohort members who enrolled from 2001 to 2003 or 2004 to 2006, respectively. For each enrollment period, we applied mixed-effects logistic regression models to determine associations between diesel particulate matter and PAHs, separately, and self-reported hypertension while adjusting for confounders and the clustering of observations within census tracts and households.ResultsThe study population consisted of 11218 participants of which 77 % were women. The mean participant age at baseline was 41 years. Following adjustment for age, there was a dose-dependent, positive association between PAHs and hypertension (medium exposure, adjusted odds ratio (OR) = 1.09, 95 % CI: 0.88-1.36; high exposure, OR = 1.40, 95 % CI: 1.01-1.94) for individuals enrolled during 2001–2003; associations were generally similar in magnitude, but less precise, following adjustment for age, gender, smoking, and BMI. No association was detected for the later period. There was no evidence of an association between residential levels of diesel particulate matter and hypertension.ConclusionsThis study builds on a limited number of prior investigations of the association between ambient air levels of PAHs or diesel particulate matter and hypertension by focusing on a relatively young cohort of predominantly adult women of Mexican origin. Future analyses are warranted to explore associations in the cohort using incident hypertension when sufficient data become available and to further examine associations between specific chemical constituents of particulate matter and hypertension in this and other populations.
In this California‐wide spatial analysis, a cumulative ranking method and a trend test were used to estimate and compare concentrations of 12 contaminants and two drinking water standard violations by system size and region. The San Joaquin Valley, areas not served by water systems, and small water systems (less than 200 connections) had the highest cumulative rank with many high levels of contaminants. Large systems and the South Coast had the highest levels of disinfection byproducts and industrial contaminants. Based on a trend analysis, violations and concentrations of arsenic and cadmium decreased as system size increased, while industrial contaminant concentrations and disinfection byproducts increased as system size increased (p < .05). Although not indicative of violating drinking water standards, this study's results demonstrate where efforts to address specific contaminants can be targeted by region or system type. The results can help elucidate where contaminants may be elevated, from both an individual and multiple‐contaminant perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.