We systematically investigate Al(0.22)Ga(0.78)N/GaN high electron mobility transistors with GaN cap layer thicknesses of 0, 1, and 3 nm. All samples have electron mobilities around 1700 cm2/Vs and sheet carrier concentrations around 8x10(exp 12) cm-2 as determined by Hall effect measurements. From photoreflectance measurements we conclude that the electric field strength within the AlGaN barrier increases with GaN cap layer thickness leading to a broadening of the transition peaks as determined by spectroscopic ellipsometry. The surface potential as determined by photoreflectance varies in the range between 0.585 and 0.249 eV dependent on the thickness of the GaN cap. Device results show a significant decrease in Ohmic contact resistance, an increase in ideality factor, a decrease in gate and drain leakage currents, an increase in gain, and an increase in power added efficiency with increasing cap layer thickness. Finally, devices with GaN cap show an improved direct current reliability compared to their counterparts without GaN cap
The polarization fields in wurtzite group III-nitrides strongly influence the optical properties of InAlGaN-based light emitters, e.g., the electron and hole wave function overlap in quantum wells. In this paper, we propose a new approach to determine these fields by capacitance-voltage measurements (CVM). Sheet charges generated by a change of the microscopic polarization at heterointerfaces influence the charge distribution in PIN junctions and therefore the depletion width and the capacitance. We show that it is possible to determine the strength and direction of the internal fields by comparing the depletion widths of two PIN junctions, one influenced by internal polarization fields and one without as a reference. For comparison, we conducted coupled Poisson/carrier transport simulations on the CVM of the polarization-influenced sample. We also demonstrate the feasibility and limits of the method by determining the fields in GaN/InGaN and GaN/AlGaN double heterostructures on (0001) c-plane grown by metal organic vapor phase epitaxy and compare both evaluation methods. The method yields (−0.50 ± 0.07) MV/cm for In0.08Ga0.92N/GaN, (0.90 ± 0.13) MV/cm for Al0.18Ga0.82N/GaN, and (2.0 ± 0.3) MV/cm for Al0.31Ga0.69N/GaN heterostructures.
The formation of three-dimensional truncated pyramids after the deposition of AlN/GaN superlattices onto (0001) AlN/sapphire templates has been analysed by atomic force microscopy as well as transmission electron microscopy. V-pits in AlN layers and the formation of nanomounds around the v-pit edges are suggested to be responsible for the pyramid formation. Keeping the individual AlN layer thickness at 2.5 nm in the 80xAlN/GaN superlattice, the transformation to the three-dimensional pyramids is observed when the individual GaN layer thickness exceeds 1.5 nm. A subsequent overgrowth of the pyramidal structures by AlGaN results in inhomogeneous Ga distribution in the layers and laterally inhomogeneous strain states. Nevertheless, compared to the growth on planar layers, the overgrowth of the truncated pyramids leads to a slight reduction in dislocation density from 1 • 10 10 cm −2 (for GaN thickness of 1 nm in SL) to 7 • 10 9 cm −2 (for GaN thickness of 2 nm in SL). The non-planar growth front and thus the compositional inhomogeneity in AlGaN vanish gradually with increasing AlGaN thickness. As a result, homogeneous 4 μm thick Al 0.5 Ga 0.5 N buffer layers suitable for the fabrication of UV-B LED structures can be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.