Nano-engineering III-nitride semiconductors offers a route to further control the optoelectronic properties, enabling novel functionalities and applications. Although a variety of lithography techniques are currently employed to nano-engineer these materials, the scalability and cost of the fabrication process can be an obstacle for large-scale manufacturing. In this paper, we report on the use of a fast, robust and flexible emerging patterning technique called Displacement Talbot lithography (DTL), to successfully nano-engineer III-nitride materials. DTL, along with its novel and unique combination with a lateral planar displacement (D2TL), allow the fabrication of a variety of periodic nanopatterns with a broad range of filling factors such as nanoholes, nanodots, nanorings and nanolines; all these features being achievable from one single mask. To illustrate the enormous possibilities opened by DTL/D2TL, dielectric and metal masks with a number of nanopatterns have been generated, allowing for the selective area growth of InGaN/GaN core-shell nanorods, the top-down plasma etching of III-nitride nanostructures, the top-down sublimation of GaN nanostructures, the hybrid top-down/bottom-up growth of AlN nanorods and GaN nanotubes, and the fabrication of nanopatterned sapphire substrates for AlN growth. Compared with their planar counterparts, these 3D nanostructures enable the reduction or filtering of structural defects and/or the enhancement of the light extraction, therefore improving the efficiency of the final device. These results, achieved on a wafer scale via DTL and upscalable to larger surfaces, have the potential to unlock the manufacturing of nano-engineered III-nitride materials.
UV light emitters in the UV-B spectral range between 280 nm and 320 nm are of great interest for applications such as phototherapy, gas sensing, plant growth lighting, and UV curing. In this paper we present high power UV-B LEDs grown by MOVPE on sapphire substrates. By optimizing the heterostructure design, growth parameters and processing technologies, significant progress was achieved with respect to internal efficiency, injection efficiency and light extraction. LED chips emitting at 310 nm with maximum output powers of up to 18 mW have been realized. Lifetime measurements show approximately 20% decrease in emission power after 1,000 operating hours at 100 mA and 5 mW output power and less than 30% after 3,500 hours of operation, thus indicating an L 50 lifetime beyond 10,000 hours.
30 6392 2685 X-ray diffraction and TEM investigations of MOVPE grown AlN on sapphire with small off-cuts to a-and m-plane reveal the influence of the off-cut direction and angle on the reduction of threading dislocation density by annihilation during growth. Higher off-cut angles as well as off-cut to aplane seem to facilitate the annihilation, with the main reduction taking place within the first 300 nm layer thickness. On planar substrate the thickness is limited by cracking to below 2 mm which also limits the ability to further reduce the defect density. By epitaxial lateral overgrowth on stripe patterned substrates the crack-free thickness is increased and further reduction of the defect density is possible. This process is effective up to 3-5 mm layer thickness. Using templates with off-cuts !0.28 to m-plane, step bunching perpendicular to the stripe direction occurs and bends the vertically directed threading dislocations into inclined grain boundaries starting from the point of coalescence. These partially block/incline threading dislocations over the ridge areas and thus further reduce the dislocation density. The dislocations are concentrated in stripes over the ridges and the coalescence areas. For smaller off-cut to m or especially for off-cut to a-plane, the dislocation distribution is more homogeneous but nevertheless stripe-like with alternating densities of low 10 8 cm À2 in the laterally overgrown areas and low 10 9 cm À2 in the areas over the ridges and the coalescence lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.