Agrobacterium-mediated transformation of higher plants is a well-known and powerful tool for transgene delivery to plant cells. In the present work, we studied whether Agrobacterium can transfer genetic information to animal (sea urchin) embryos. Sea urchin embryos were co-cultivated with A. tumefaciens strains carrying binary vectors containing the nptII marker gene and agrobacterial rolC and rolB oncogenes. Bacterial plasmid T-DNA-sea urchin DNA junction sites were identified in the genome of these embryos, thus indicating successful transformation. The nptII and both rol genes were expressed in the transformed embryos. The processes of transgene integration and transgene expression were suppressed when Agrobacteria contained mutated virA, virB or virG genes, suggesting that Agrobacterium transforms sea urchin cells by a mechanism similar to that which mediates T-DNA transfer to plants. Some of the embryos co-cultivated with Agrobacterium developed teratoma-like structures. The ability of Agrobacterium strains to trigger formation of teratoma-like structures was diminished when they contained the mutated vir genes. In summary, our results demonstrate that Agrobacterium is able to transform animal (sea urchin) embryonic cells, thus indicating a potential of this natural system for gene delivery to animal hosts. We also discuss the possibility of horizontal gene transfer from Agrobacterium to marine invertebrates.
Nemertea is a phylum of marine worms whose members bear various toxins, including tetrodotoxin (TTX) and its analogues. Despite the more than 30 years of studying TTXs in nemerteans, many questions regarding their functions and the mechanisms ensuring their accumulation and usage remain unclear. In the nemertean Kulikovia alborostrata, we studied TTX and 5,6,11-trideoxyTTX concentrations in body extracts and in released mucus, as well as various aspects of the TTX-positive-cell excretion system and voltage-gated sodium (Nav1) channel subtype 1 mutations contributing to the toxins’ accumulation. For TTX detection, an immunohistological study with an anti-TTX antibody and HPLC-MS/MS were conducted. For Nav1 mutation searching, PCR amplification with specific primers, followed by Sanger sequencing, was used. The investigation revealed that, in response to an external stimulus, subepidermal TTX-positive cells released secretions actively to the body surface. The post-release toxin recovery in these cells was low for TTX and high for 5,6,11-trideoxyTTX in captivity. According to the data obtained, there is low probability of the targeted usage of TTX as a repellent, and targeted 5,6,11-trideoxyTTX secretion by TTX-bearing nemerteans was suggested as a possibility. The Sanger sequencing revealed identical sequences of the P-loop regions of Nav1 domains I–IV in all 17 studied individuals. Mutations comprising amino acid substitutions, probably contributing to nemertean channel resistance to TTX, were shown.
How cell polarity is established and maintained is an important question in diverse biological contexts. Molecular mechanisms used to localize polarity proteins to distinct domains are likely context-dependent and provide a feedback loop in order to maintain polarity. One such mechanism is the localized translation of mRNAs encoding polarity proteins, which will be the focus of this review and may play a more important role in the establishment and maintenance of polarity than is currently known. Localized translation of mRNAs encoding polarity proteins can be used to establish polarity in response to an external signal, and to maintain polarity by local production of polarity determinants. The importance of this mechanism is illustrated by recent findings, including orb2-dependent localized translation of aPKC mRNA at the apical end of elongating spermatid tails in the Drosophila testis, and the apical localization of stardust A mRNA in Drosophila follicle and embryonic epithelia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.