Parallel systems that support the shared memory abstraction are becoming widely accepted in many areas of computing. Writing correct and efficient programs for such systems requires a formal specification of memory semantics, called a memory consistency model. The most intuitive model-sequential consistency-greatly restricts the use of many performance optimizations commonly used by uniprocessor hardware and compiler designers, thereby reducing the benefit of using a multiprocessor. To alleviate this problem, many current multiprocessors support more relaxed consistency models. Unfortunately, the models supported by various systems differ from each other in subtle yet important ways. Furthermore, precisely defining the semantics of each model often leads to complex specifications that are difficult to understand for typical users and builders of computer systems. The purpose of this tutorial paper is to describe issues related to memory consistency models in a way that would be understandable to most computer professionals. We focus on consistency models proposed for hardware-based shared-memory systems. Many of these models are originally specified with an emphasis on the system optimizations they allow. We retain the system-centric emphasis, but use uniform and simple terminology to describe the different models. We also briefly discuss an alternate programmer-centric view that describes the models in terms of program behavior rather than specific system optimizations. 1
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
Commercial applications such as databases and Web servers constitute the largest and fastest-growing segment of the market for multiprocessor servers. Ongoing innovations in disk subsystems, along with the ever increasing gap between processor and memory speeds, have elevated memory system design as the critical performance factor for such workloads. However, most current server designs have been optimized to perform well on scientific and engineering workloads, potentially leading to design decisions that are non-ideal for commercial applications. The above problem is exacerbated by the lack of information on the performance requirements of commercial workloads, the lack of available applications for widespread study, and the fact that most representative applications are too large and complex to serve as suitable benchmarks for evaluating trade-offs in the design of processors and servers. This paper presents a detailed performance study of three important classes of commercial workloads: online transaction processing (OLTP), decision support systems (DSS), and Web index search. We use the Oracle commercial database engine for our OLTP and DSS workloads, and the AltaVista search engine for our Web index search workload. This study characterizes the memory system behavior of these workloads through a large number of architectural experiments on Alpha multiprocessors augmented with full system simulations to determine the impact of architectural trends. We also identify a set of simplifications that make these workloads more amenable to monitoring and simulation without affecting representative memory system behavior. We observe that systems optimized for OLTP versus DSS and index search workloads may lead to diverging designs, specifically in the size and speed requirements for off-chip caches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.